BOOKS - Machine Learning with R, 4th Edition
Machine Learning with R, 4th Edition - Brett Lantz  PDF  BOOKS
ECO~18 kg CO²

3 TON

Views
62173

Telegram
 
Machine Learning with R, 4th Edition
Author: Brett Lantz
Format: PDF
File size: PDF 44 MB
Language: English



Pay with Telegram STARS
The book "Machine Learning with R, 4th Edition" is a comprehensive guide to applying machine learning techniques using the R programming language. The author, Brett Lantz, provides a hands-on, accessible approach to teaching readers how to solve real-world data problems and gain valuable insights from their data. With this book, readers will learn how to preprocess data, make predictions, and visualize their findings, as well as how to build successful machine learning models and tackle more complex data preparation tasks. The 10th anniversary edition of the book includes several new chapters that reflect the advancements in machine learning over the past few years, as well as updates on newer and better libraries, ethical and bias considerations, and an introduction to deep learning. This edition has been updated to R version 400, ensuring that readers have access to the latest tools and techniques in the field. One of the key themes of the book is the importance of developing a personal paradigm for understanding the technological process of developing modern knowledge. As technology continues to evolve at an incredible pace, it is essential that individuals understand the need to study and adapt to these changes in order to survive and thrive in a rapidly changing world. By developing a personal paradigm, readers can gain a deeper understanding of the technological process and its impact on society, enabling them to navigate the complex landscape of modern knowledge with confidence and expertise. The book begins by introducing the basics of machine learning, including data preprocessing, feature selection, and model evaluation. From there, readers are guided through the process of building and evaluating machine learning models using real-world examples and case studies.
Книга «Машинное обучение с R, 4-е издание» представляет собой исчерпывающее руководство по применению техник машинного обучения с использованием языка программирования R. Автор, Бретт Ланц, предлагает практический, доступный подход к обучению читателей тому, как решать реальные проблемы с данными и получать ценную информацию из своих данных. С помощью этой книги читатели узнают, как предварительно обрабатывать данные, делать прогнозы и визуализировать свои выводы, а также как строить успешные модели машинного обучения и решать более сложные задачи по подготовке данных. Юбилейное 10-е издание книги включает в себя несколько новых глав, которые отражают достижения в области машинного обучения за последние несколько лет, а также обновления новых и лучших библиотек, этические соображения и соображения предвзятости, а также введение в глубокое обучение. Это издание было обновлено до R версии 400, что гарантирует читателям доступ к новейшим инструментам и методам в этой области. Одна из ключевых тем книги - важность выработки личностной парадигмы для понимания технологического процесса развития современных знаний. Поскольку технологии продолжают развиваться невероятными темпами, важно, чтобы люди понимали необходимость изучения и адаптации к этим изменениям, чтобы выжить и процветать в быстро меняющемся мире. Развивая личную парадигму, читатели могут получить более глубокое понимание технологического процесса и его влияния на общество, позволяя им с уверенностью и опытом ориентироваться в сложном ландшафте современных знаний. Книга начинается с введения основ машинного обучения, включая предварительную обработку данных, выбор признаков и оценку модели. Оттуда читатели проходят процесс построения и оценки моделей машинного обучения на реальных примерах и тематических исследованиях.
livre « Machine arning with R, 4ème édition » est un guide complet sur l'application des techniques d'apprentissage automatique en utilisant le langage de programmation R. L'auteur, Brett Lantz, propose une approche pratique et abordable pour enseigner aux lecteurs comment résoudre les problèmes de données réelles et obtenir des informations précieuses à partir de leurs données. Grâce à ce livre, les lecteurs apprennent à prétraiter les données, à faire des prévisions et à visualiser leurs conclusions, à construire des modèles d'apprentissage automatique réussis et à relever des défis plus complexes en matière de production de données. La 10e édition anniversaire du livre comprend plusieurs nouveaux chapitres qui reflètent les réalisations dans le domaine de l'apprentissage automatique au cours des dernières années, ainsi que des mises à jour de bibliothèques nouvelles et meilleures, des considérations éthiques et de partialité, et une introduction à l'apprentissage profond. Cette édition a été mise à jour en version R 400, ce qui garantit aux lecteurs l'accès aux derniers outils et techniques dans ce domaine. L'un des principaux thèmes du livre est l'importance de développer un paradigme personnel pour comprendre le processus technologique du développement des connaissances modernes. Alors que la technologie continue d'évoluer à un rythme incroyable, il est important que les gens comprennent la nécessité d'étudier et de s'adapter à ces changements pour survivre et prospérer dans un monde en mutation rapide. En développant un paradigme personnel, les lecteurs peuvent acquérir une meilleure compréhension du processus technologique et de son impact sur la société, leur permettant de naviguer avec confiance et expérience dans le paysage complexe du savoir moderne. livre commence par l'introduction des bases de l'apprentissage automatique, y compris le prétraitement des données, la sélection des caractéristiques et l'évaluation du modèle. De là, les lecteurs suivent un processus de construction et d'évaluation de modèles d'apprentissage automatique à partir d'exemples réels et d'études de cas.
libro Machine arning con R, 4ª edición es una guía exhaustiva para la aplicación de las técnicas de aprendizaje automático utilizando el lenguaje de programación R. autor, Brett Lantz, ofrece un enfoque práctico y accesible para enseñar a los lectores cómo resolver problemas de datos reales y obtener información valiosa de sus datos. Con este libro, los lectores aprenderán a pre-procesar datos, hacer predicciones y visualizar sus conclusiones, así como a construir modelos exitosos de aprendizaje automático y a resolver problemas más complejos de preparación de datos. La edición del décimo aniversario del libro incluye varios nuevos capítulos que reflejan los avances en el aprendizaje automático en los últimos , así como actualizaciones de nuevas y mejores bibliotecas, consideraciones éticas y sesgos, y una introducción al aprendizaje profundo. Esta edición se ha actualizado a la versión R 400, lo que garantiza a los lectores el acceso a las últimas herramientas y técnicas en este campo. Uno de los temas clave del libro es la importancia de generar un paradigma personal para entender el proceso tecnológico del desarrollo del conocimiento moderno. A medida que la tecnología continúa evolucionando a un ritmo increíble, es importante que la gente entienda la necesidad de aprender y adaptarse a estos cambios para sobrevivir y prosperar en un mundo que cambia rápidamente. Al desarrollar un paradigma personal, los lectores pueden adquirir una comprensión más profunda del proceso tecnológico y su impacto en la sociedad, lo que les permite navegar con confianza y experiencia en el complejo paisaje del conocimiento moderno. libro comienza con la introducción de los fundamentos del aprendizaje automático, incluyendo el procesamiento previo de datos, la selección de rasgos y la evaluación del modelo. A partir de ahí, los lectores pasan por un proceso de construcción y evaluación de modelos de aprendizaje automático a través de ejemplos reales y estudios de caso.
Il libro «Apprendimento automatico con R, quarta edizione» è una guida completa per l'uso della tecnologia di apprendimento automatico con il linguaggio di programmazione R. L'autore, Brett Luntz, offre un approccio pratico e accessibile per insegnare ai lettori come risolvere i veri problemi di dati e ottenere informazioni preziose dai propri dati. Grazie a questo libro, i lettori impareranno come predisporre i dati, predire e visualizzare le loro conclusioni, come costruire modelli di apprendimento automatico di successo e affrontare sfide più complesse nella preparazione dei dati. La decima edizione del Giubileo del libro comprende diversi nuovi capitoli che riflettono i progressi nell'apprendimento automatico negli ultimi anni, così come gli aggiornamenti di nuove e migliori librerie, considerazioni etiche e pregiudizi e l'introduzione all'apprendimento profondo. Questa edizione è stata aggiornata alla versione R 400, garantendo ai lettori l'accesso agli strumenti e ai metodi più recenti in questo campo. Uno dei temi chiave del libro è l'importanza di sviluppare un paradigma personale per comprendere il processo tecnologico di sviluppo della conoscenza moderna. Poiché la tecnologia continua a crescere a un ritmo incredibile, è importante che le persone comprendano la necessità di studiare e adattarsi a questi cambiamenti per sopravvivere e prosperare in un mondo in rapida evoluzione. Sviluppando un paradigma personale, i lettori possono acquisire una maggiore comprensione del processo tecnologico e del suo impatto sulla società, permettendo loro di orientarsi con fiducia ed esperienza nel complesso panorama della conoscenza moderna. Il libro inizia con l'introduzione di basi di apprendimento automatico, inclusi l'elaborazione preliminare dei dati, la selezione dei segni e la valutazione del modello. Da lì i lettori si sottopongono al processo di costruzione e valutazione dei modelli di apprendimento automatico su esempi reali e studi di caso.
Das Buch „Maschinelles rnen mit R, 4. Auflage“ ist eine umfassende Anleitung zur Anwendung von maschinellen rntechniken mit der Programmiersprache R. Der Autor Brett Lanz bietet einen praktischen, zugänglichen Ansatz, um sern beizubringen, wie sie reale Datenprobleme lösen und aus ihren Daten wertvolle Erkenntnisse gewinnen können. Mit diesem Buch lernen die ser, Daten vorzuverarbeiten, Vorhersagen zu treffen und ihre Erkenntnisse zu visualisieren sowie erfolgreiche Machine-arning-Modelle aufzubauen und komplexere Datenaufbereitungsprobleme zu lösen. Die 10. Jubiläumsausgabe des Buches enthält mehrere neue Kapitel, die die Fortschritte im Bereich des maschinellen rnens in den letzten Jahren widerspiegeln, sowie Aktualisierungen neuer und besserer Bibliotheken, ethische Überlegungen und Überlegungen zur Voreingenommenheit sowie eine Einführung in Deep arning. Diese Ausgabe wurde auf die R-Version 400 aktualisiert, die den sern den Zugang zu den neuesten Werkzeugen und Methoden in diesem Bereich garantiert. Eines der Hauptthemen des Buches ist die Bedeutung der Entwicklung eines persönlichen Paradigmas für das Verständnis des technologischen Prozesses der Entwicklung des modernen Wissens. Da sich die Technologie in einem unglaublichen Tempo weiterentwickelt, ist es wichtig, dass die Menschen die Notwendigkeit verstehen, diese Veränderungen zu erforschen und sich daran anzupassen, um in einer sich schnell verändernden Welt zu überleben und zu gedeihen. Durch die Entwicklung eines persönlichen Paradigmas können die ser ein tieferes Verständnis des technologischen Prozesses und seiner Auswirkungen auf die Gesellschaft erlangen, so dass sie mit Zuversicht und Erfahrung durch die komplexe Landschaft des modernen Wissens navigieren können. Das Buch beginnt mit einer Einführung in die Grundlagen des maschinellen rnens, einschließlich der Vorverarbeitung von Daten, der Auswahl von Merkmalen und der Bewertung des Modells. Von dort aus durchlaufen die ser den Prozess des Aufbaus und der Bewertung von Machine-arning-Modellen anhand realer Beispiele und Fallstudien.
''
R ile Makine Öğrenimi, 4th Edition, R programlama dilini kullanarak makine öğrenme tekniklerini uygulamak için kapsamlı bir kılavuzdur. Yazar Brett Lantz, okuyuculara gerçek dünyadaki veri problemlerini nasıl çözeceklerini öğretmek ve verilerinden değerli bilgiler elde etmek için pratik ve erişilebilir bir yaklaşım sunmaktadır. Bu kitapla, okuyucular verileri nasıl önceden işleyeceklerini, tahminlerde bulunacaklarını ve sonuçlarını görselleştireceklerini, ayrıca başarılı makine öğrenme modelleri oluşturmayı ve daha karmaşık veri hazırlama görevlerini nasıl çözeceklerini öğreneceklerdir. Kitabın 10. yıldönümü baskısı, son birkaç yıl içinde makine öğrenimindeki gelişmeleri yansıtan birkaç yeni bölümün yanı sıra yeni ve daha iyi kütüphanelere yönelik güncellemeler, etik ve önyargı hususları ve derin öğrenmeye giriş içerir. Bu sürüm, okuyucuların alandaki en yeni araçlara ve tekniklere erişimini garanti eden R sürüm 400'e güncellenmiştir. Kitabın ana konularından biri, modern bilgiyi geliştirmenin teknolojik sürecini anlamak için kişisel bir paradigma geliştirmenin önemidir. Teknoloji inanılmaz bir hızla ilerlemeye devam ederken, insanların hızla değişen bir dünyada hayatta kalmak ve gelişmek için bu değişiklikleri öğrenme ve bunlara uyum sağlama ihtiyacını anlamaları önemlidir. Kişisel bir paradigma geliştirerek, okuyucular teknolojik süreç ve toplum üzerindeki etkisi hakkında daha derin bir anlayış kazanabilir ve modern bilginin karmaşık manzarasını güven ve deneyimle yönlendirebilirler. Kitap, veri ön işleme, özellik seçimi ve model değerlendirmesi dahil olmak üzere makine öğreniminin temellerini tanıtarak başlıyor. Oradan, okuyucular gerçek dünyadaki örnekleri ve vaka çalışmalarını kullanarak makine öğrenme modellerini oluşturma ve değerlendirme sürecinden geçerler.
Machine arning with R، الإصدار الرابع هو دليل شامل لتطبيق تقنيات التعلم الآلي باستخدام لغة البرمجة R. يقدم المؤلف، بريت لانتز، نهجًا عمليًا يسهل الوصول إليه لتعليم القراء كيفية حل مشاكل البيانات في العالم الحقيقي والحصول على رؤى قيمة من بياناتهم. من خلال هذا الكتاب، سيتعلم القراء كيفية معالجة البيانات مسبقًا، وإجراء التنبؤات وتصور استنتاجاتهم، بالإضافة إلى كيفية بناء نماذج التعلم الآلي الناجحة وحل مهام إعداد البيانات الأكثر تعقيدًا. تتضمن النسخة العاشرة من الكتاب العديد من الفصول الجديدة التي تعكس التقدم في التعلم الآلي على مدى السنوات القليلة الماضية، بالإضافة إلى تحديثات للمكتبات الجديدة والأفضل، والاعتبارات الأخلاقية والتحيز، ومقدمة للتعلم العميق. تم تحديث هذا الإصدار إلى الإصدار R 400، مما يضمن للقراء الوصول إلى أحدث الأدوات والتقنيات في هذا المجال. أحد الموضوعات الرئيسية للكتاب هو أهمية تطوير نموذج شخصي لفهم العملية التكنولوجية لتطوير المعرفة الحديثة. مع استمرار تقدم التكنولوجيا بوتيرة لا تصدق، من المهم أن يفهم الناس الحاجة إلى التعلم والتكيف مع هذه التغييرات من أجل البقاء والازدهار في عالم سريع التغير. من خلال تطوير نموذج شخصي، يمكن للقراء اكتساب فهم أعمق للعملية التكنولوجية وتأثيرها على المجتمع، مما يسمح لهم بالتنقل في المشهد المعقد للمعرفة الحديثة بثقة وخبرة. يبدأ الكتاب بتقديم أساسيات التعلم الآلي، بما في ذلك المعالجة المسبقة للبيانات واختيار الميزات وتقييم النماذج. من هناك، يمر القراء بعملية بناء وتقييم نماذج التعلم الآلي باستخدام أمثلة من العالم الحقيقي ودراسات حالة.

You may also be interested in:

Machine Learning in Production: Master the art of delivering robust Machine Learning solutions with MLOps (English Edition)
Machine Learning for Beginners Build and deploy Machine Learning systems using Python, 2nd Edition
Introduction to Machine Learning (Adaptive Computation and Machine Learning), 4th Edition
Practical Machine Learning with R and Python Machine Learning in Stereo, Third Edition
Ultimate Machine Learning with ML.NET: Build, Optimize, and Deploy Powerful Machine Learning Models for Data-Driven Insights with ML.NET, Azure Functions, and Web API (English Edition)
Practical Automated Machine Learning on Azure Using Azure Machine Learning to Quickly Build AI Solutions, First Edition
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Ultimate Java for Data Analytics and Machine Learning: Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j (English Edition)
Mastering Classification Algorithms for Machine Learning: Learn how to apply Classification algorithms for effective Machine Learning solutions (English Edition)
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Artificial Intelligence and Machine Learning Foundations Learning from experience, 2nd Edition
Artificial Intelligence and Machine Learning Foundations Learning from experience, 2nd Edition
Machine Learning: Master Supervised and Unsupervised Learning Algorithms with Real Examples (English Edition)
Default Loan Prediction Based On Customer Behavior Using Machine Learning And Deep Learning With Python, Second Edition
Machine Learning for Business The Ultimate Artificial Intelligence & Machine Learning for Managers, Team Leaders and Entrepreneurs
Machine Learning for Beginners An Introductory Guide to Learn and Understand Artificial Intelligence, Neural Networks and Machine Learning
Building Machine Learning Systems Using Python Practice to Train Predictive Models and Analyze Machine Learning Results
Applied Machine Learning and High-Performance Computing on AWS: Accelerate the development of machine learning applications following architectural best practices
Serverless Machine Learning with Amazon Redshift ML: Create, train, and deploy machine learning models using familiar SQL commands
Machine Learning for Data Streams with Practical Examples in MOA (Adaptive Computation and Machine Learning series)
Online Machine Learning: A Practical Guide with Examples in Python (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning Master Machine Learning Fundamentals for Beginners, Business Leaders and Aspiring Data Scientists
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning, 2nd Edition (Final Release)
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning, 2nd Edition (Final Release)
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python
Robust Machine Learning: Distributed Methods for Safe AI (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning with Core ML 2 and Swift A beginner-friendly guide to integrating machine learning into your apps
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming With Python 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis
Data Science Crash Course Thyroid Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI, Second Edition
Machine Learning for Beginners A Practical Guide to Understanding and Applying Machine Learning Concepts
Machine Learning, Animated (Chapman and Hall CRC Machine Learning and Pattern Recognition)
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning