BOOKS - STROKE: Analysis and Prediction Using Scikit-Learn, Keras, and TensorFlow wit...
STROKE: Analysis and Prediction Using Scikit-Learn, Keras, and TensorFlow with Python GUI - Vivian Siahaan September 8, 2021 PDF  BOOKS
ECO~19 kg CO²

2 TON

Views
611622

 
STROKE: Analysis and Prediction Using Scikit-Learn, Keras, and TensorFlow with Python GUI
Author: Vivian Siahaan
Year: September 8, 2021
Format: PDF
File size: PDF 15 MB
Language: English



STROKE Analysis and Prediction Using Scikit-Learn Keras and TensorFlow with Python GUI = The book "STROKE Analysis and Prediction Using Scikit-Learn Keras and TensorFlow with Python GUI" is an in-depth guide to analyzing and predicting stroke data using machine learning and deep learning techniques. The book covers the entire process of developing a personal paradigm for perceiving the technological process of developing modern knowledge, which is essential for the survival of humanity and the unification of people in a warring state. The text focuses on the need to study and understand the process of technology evolution, providing a detailed description of the plot. Exploring Stroke Dataset - The book begins by exploring the stroke dataset, which contains information about various factors related to individuals and their likelihood of experiencing a stroke. The authors load the dataset and examine its structure, features, and statistical summary. They preprocess the data to ensure its suitability for training machine learning models, including handling missing values, encoding categorical variables, and scaling numerical features. Data imputation and label encoding are also employed to gain insights from the data.
STROKE Analysis and Prediction Using Scikit-arn Keras and TensorFlow with Python GUI = Книга «STROKE Analysis and Prediction Using Scikit-arn Keras and TensorFlow with Python GUI» представляет собой углубленное руководство по анализу и прогнозированию данных об инсульте с помощью машинного обучения и глубокого обучения техники. Книга охватывает весь процесс выработки личностной парадигмы восприятия технологического процесса развития современного знания, необходимого для выживания человечества и объединения людей в воюющем государстве. Текст акцентирует внимание на необходимости изучения и понимания процесса эволюции технологий, предоставляя подробное описание сюжета. Изучение набора данных об инсульте - книга начинается с изучения набора данных об инсульте, который содержит информацию о различных факторах, связанных с людьми, и их вероятности пережить инсульт. Авторы загружают набор данных и изучают его структуру, особенности и статистическую сводку. Они предварительно обрабатывают данные, чтобы обеспечить их пригодность для обучения моделей машинного обучения, включая обработку пропущенных значений, кодирование категориальных переменных и масштабирование числовых признаков. Вменение данных и кодирование меток также используются для получения информации из данных.
STROKE Analysis and Prediction Using Scikit-arn Keras and TensorFlow with Python GUI = Livre « STROKE Analysis and Prediction Using Scikit-arn Keras and TensorFlow with Python GUI » est un guide approfondi sur l'analyse et la prévision des données d'AVC par l'apprentissage automatique et l'apprentissage en profondeur de la technique. livre couvre tout le processus d'élaboration du paradigme personnel de la perception du processus technologique du développement des connaissances modernes nécessaires à la survie de l'humanité et à l'unification des gens dans un État en guerre. texte met l'accent sur la nécessité d'étudier et de comprendre le processus d'évolution des technologies en fournissant une description détaillée de l'histoire. Examen d'un ensemble de données sur les AVC - livre commence par l'examen d'un ensemble de données sur les AVC qui contient des informations sur divers facteurs liés aux personnes et leur probabilité de survivre à un AVC. s auteurs chargent un ensemble de données et examinent sa structure, ses caractéristiques et son résumé statistique. Ils prétraitent les données pour s'assurer qu'elles sont adaptées à l'apprentissage des modèles d'apprentissage automatique, y compris le traitement des valeurs omises, le codage des variables catégoriques et l'échelle des caractéristiques numériques. L'imputation des données et le codage des étiquettes sont également utilisés pour obtenir des informations à partir des données.
STROKE Análisis y predicción Using Scikit-arn Keras and TensorFlow with Python GUI = «STROKE Analysis and Predicction Using Scikit-arn Keras and TensorFlow with Python GUI» es una guía en profundidad para analizar y predecir datos sobre accidentes cerebrovasculares a través del aprendizaje automático y la técnica de aprendizaje profundo. libro abarca todo el proceso de elaboración del paradigma personal de la percepción del proceso tecnológico de desarrollo del conocimiento moderno necesario para la supervivencia de la humanidad y la unión de las personas en un Estado en guerra. texto se centra en la necesidad de estudiar y entender el proceso de evolución de la tecnología, proporcionando una descripción detallada de la trama. estudio de un conjunto de datos sobre un accidente cerebrovascular - el libro comienza con el estudio de un conjunto de datos sobre un accidente cerebrovascular que contiene información sobre los diferentes factores relacionados con las personas y su probabilidad de sobrevivir a un accidente cerebrovascular. autores cargan un conjunto de datos y estudian su estructura, características y resumen estadístico. Estos procesan previamente los datos para garantizar su idoneidad para el aprendizaje de modelos de aprendizaje automático, incluyendo el procesamiento de valores omitidos, la codificación de variables categóricas y la escala de caracteres numéricos. La imputación de datos y la codificación de etiquetas también se utilizan para obtener información de los datos.
STROKE Analysis and Prediction Using Scikit-arn Keras and TensorFlow with Python GUI = Buch „STROKE Analysis and Prediction Using Scikit-arn Keras and TensorFlow with Python GUI“ ist ein ausführlicher itfaden zur Analyse und Vorhersage von Schlaganfalldaten durch maschinelles rnen und Deep arning der Technik. Das Buch behandelt den gesamten Prozess der Entwicklung eines persönlichen Paradigmas der Wahrnehmung des technologischen Prozesses der Entwicklung des modernen Wissens, das für das Überleben der Menschheit und die Vereinigung der Menschen in einem kriegführenden Staat notwendig ist. Der Text betont die Notwendigkeit, den Prozess der Technologieentwicklung zu studieren und zu verstehen, und bietet eine detaillierte Beschreibung der Handlung. Untersuchung eines Schlaganfalldatensatzes - Das Buch beginnt mit der Untersuchung eines Schlaganfalldatensatzes, der Informationen über verschiedene Faktoren im Zusammenhang mit Menschen und deren Wahrscheinlichkeit, einen Schlaganfall zu überleben, enthält. Die Autoren laden den Datensatz herunter und untersuchen seine Struktur, Merkmale und statistische Zusammenfassung. e verarbeiten die Daten, um sicherzustellen, dass sie für das Training von Machine-arning-Modellen geeignet sind, einschließlich der Verarbeitung fehlender Werte, der Kodierung kategorialer Variablen und der Skalierung numerischer Merkmale. Die Imputation der Daten und die Codierung der Etiketten werden auch verwendet, um Informationen aus den Daten zu erhalten.
''
STROKE Analysis and Prediction Using Scikit-arn Keras and TensorFlow with Python GUI = Kitap "STROKE Analysis and Prediction Using Scikit-arn Keras and TensorFlow with Python GUI", makine öğrenimi ve derin teknik öğrenme yoluyla inme verilerini analiz etmek ve tahmin etmek için derinlemesine bir kılavuzdur. Kitap, insanlığın hayatta kalması ve insanların savaşan bir durumda birleşmesi için gerekli olan modern bilginin teknolojik gelişim sürecinin algılanması için kişisel bir paradigma geliştirme sürecinin tamamını kapsar. Metin, teknolojinin evrimini inceleme ve anlama ihtiyacına odaklanır ve arsa hakkında ayrıntılı bir açıklama sunar. İnme Veri Kümesinin İncelenmesi - Kitap, bireylerle ilişkili çeşitli faktörler ve inme hayatta kalma olasılıkları hakkında bilgi içeren inme veri kümesini inceleyerek başlar. Yazarlar bir veri kümesi yükler ve yapısını, özelliklerini ve istatistiksel özetini inceler. Eksik değerleri işlemek, kategorik değişkenleri kodlamak ve sayısal özellikleri ölçeklendirmek de dahil olmak üzere makine öğrenme modellerini eğitmek için uygunluğunu sağlamak için verileri önceden işlerler. Veri ithamı ve etiket kodlaması da verilerden bilgi elde etmek için kullanılır.
تحليل السكتة الدماغية والتنبؤ باستخدام Scikit-arn Keras و TensorFlow مع Python GUI = Book "تحليل السكتة الدماغية والتنبؤ باستخدام Scikit-arn Keras و TensorFlow with with with with Pain دليل متعمق لتحليل بيانات السكتة الدماغية والتنبؤ بها من خلال التعلم الآلي والتعلم العميق. يغطي الكتاب كامل عملية تطوير نموذج شخصي لتصور العملية التكنولوجية لتطوير المعرفة الحديثة، الضرورية لبقاء البشرية وتوحيد الناس في دولة متحاربة. يركز النص على الحاجة إلى دراسة وفهم تطور التكنولوجيا، وتقديم وصف مفصل للحبكة. دراسة مجموعة بيانات السكتة الدماغية - يبدأ الكتاب بفحص مجموعة بيانات السكتة الدماغية، والتي تحتوي على معلومات حول العوامل المختلفة المرتبطة بالأفراد واحتمالية النجاة من السكتة الدماغية. يقوم المؤلفون بتحميل مجموعة بيانات ودراسة هيكلها وميزاتها وملخصها الإحصائي. إنهم يعالجون البيانات مسبقًا لضمان ملاءمتها لتدريب نماذج التعلم الآلي، بما في ذلك معالجة القيم المفقودة، وترميز المتغيرات الفئوية، وتوسيع نطاق الميزات العددية. ويُستخدم أيضا إسناد البيانات وترميز البطاقات لاستخلاص المعلومات من البيانات.

You may also be interested in:

STROKE: Analysis and Prediction Using Scikit-Learn, Keras, and TensorFlow with Python GUI
Stroke Analysis and Prediction Using Scikit-Learn, Keras, and TensorFlow with Python GUI, Second Edition
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Ultimate Machine Learning with Scikit-Learn: Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock … Into Machine Learning (English Editi
Python For Data Analysis A Step By Step Guide To Build Intelligent System Machine Learning, Scikit-Learn, Keras And Tensorflow
Python Data Science The Ultimate Handbook for Beginners on How to Explore NumPy for Numerical Data, Pandas for Data Analysis, IPython, Scikit-Learn and Tensorflow for Machine Learning and Business
Learn AI with Python Explore Machine Learning and Deep Learning techniques for Building Smart AI Systems Using Scikit-Learn
Learn AI with Python: Explore Machine Learning and Deep Learning techniques for Building Smart AI Systems Using Scikit-Learn, NLTK, NeuroLab, and Keras
Машинное обучение с PyTorch и Scikit-Learn
Машинное обучение с PyTorch и Scikit-Learn
Scikit-learn in Details Deep understanding
Hands-On Machine Learning with Scikit-Learn and TensorFlow
Gravity Currents and Intrusions Analysis and Prediction
Machine Learning for Biomedical Applications: With Scikit-Learn and PyTorch
Прикладное машинное обучение с помощью Scikit-Learn и TensorFlow
Python Machine Learning: A Beginner|s Guide to Scikit-Learn
Distributed Machine Learning with PySpark Migrating Effortlessly from Pandas and Scikit-Learn
Прикладное машинное обучение с помощью Scikit-Learn, Keras и TensorFlow 2-е издание
Distributed Machine Learning with PySpark Migrating Effortlessly from Pandas and Scikit-Learn
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition
Python Machine Learning A Beginner|s Guide to Scikit-Learn A Hands-On Approach
Python Machine Learning A Beginner|s Guide to Scikit-Learn A Hands-On Approach
Cryptocurrency Price Analysis, Prediction, And Forecasting Using Machine Learning With Python, Second Edition
Machine Learning For Concrete Compressive Strength Analysis And Prediction With Python, Second Edition
Machine Learning with Python Master Pandas, Scikit-learn, and TensorFlow for Building Smart IA Models
Machine Learning with Python Master Pandas, Scikit-learn, and TensorFlow for Building Smart IA Models
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition (Early Release)
Practical Time Series Analysis Prediction with Statistics and Machine Learning (Early Release)
Data Science from Scratch with Python Concepts and Practices with NumPy, Pandas, Matplotlib, Scikit-Learn and Keras
Feature Engineering for Modern Machine Learning with Scikit-Learn Advanced Data Science and Practical Applications
Python for Natural Language Processing Programming with NumPy, Scikit-learn, Keras, and PyTorch, 3rd Edition
Python for Natural Language Processing Programming with NumPy, Scikit-learn, Keras, and PyTorch, 3rd Edition
Learn Emotion Analysis with R Perform Sentiment Assessments, Extract Emotions, and Learn NLP Techniques Using R and Shiny
Practical Guide to Applied Conformal Prediction in Python: Learn and apply the best uncertainty frameworks to your industry applications
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow Concepts, Tools, and Techniques to Build Intelligent Systems Second Edition (Third Release)
Mastering OpenCV with Python Use NumPy, Scikit, TensorFlow, and Matplotlib to learn Advanced algorithms for Machine Learning through a set of Practical Projects
Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow Concepts, Tools, and Techniques to Build Intelligent Systems Second Edition (Early Release)
XGBoost With Python Gradient Boosted Trees With XGBoost and scikit-learn