BOOKS - Microservices for Machine Learning: Design, implement, and manage high-perfor...
Microservices for Machine Learning: Design, implement, and manage high-performance ML systems with microservices (English Edition) - Rohit Ranjan  PDF  BOOKS
ECO~27 kg CO²

2 TON

Views
96067

Telegram
 
Microservices for Machine Learning: Design, implement, and manage high-performance ML systems with microservices (English Edition)
Author: Rohit Ranjan
Format: PDF
File size: PDF 4.6 MB
Language: English



Pay with Telegram STARS
He is currently a PhD candidate at the University of Waterloo exploring the intersection of AI and blockchain. Suresh S is a seasoned software professional with over two decades of experience in designing and implementing large scale systems using microservices architecture He has worked with multiple Fortune 500 companies and has extensive knowledge of cloud computing containerization and DevOps practices. He is passionate about sharing his knowledge through public speaking and writing. Publisher's SummaryIn this book we explore the fusion of microservices and machine learning ML and its impact across industries We delve into the principles of microservices architecture and their application to ML development and deployment providing you with a comprehensive understanding of how these technologies can be used together to create scalable efficient and secure systems The book begins by establishing a foundation in microservices principles and core ML concepts before diving into practical aspects of design implementation and management of highperformance ML applications It covers data management strategies for ML including realtime data ingestion and data versioning as well as crucial aspects of securing ML microservices and using CI CD practices to streamline development and deployment Finally we examine realworld use cases showcasing how ML microservices are revolutionizing various industries alongside a glimpse into the exciting future trends shaping this evolving field.
В настоящее время он является кандидатом наук в Университете Ватерлоо, исследуя пересечение ИИ и блокчейна. Suresh S - опытный специалист в области программного обеспечения с более чем двадцатилетним опытом проектирования и внедрения крупномасштабных систем с использованием архитектуры микросервисов. Он работал с несколькими компаниями из списка Fortune 500 и обладает обширными знаниями в области контейнеризации облачных вычислений и практики DevOps. Он увлечен тем, что делится своими знаниями посредством публичных выступлений и письма. Резюме издателяВ этой книге мы исследуем слияние микросервисов и машинного обучения ML и его влияние на отрасли. Мы углубляемся в принципы архитектуры микросервисов и их применение для разработки и развертывания ML, предоставляя вам всестороннее понимание того, как эти технологии могут использоваться вместе для создания масштабируемых эффективных и безопасных систем. Книга начинается с создания основы в принципах микросервисов и основных концепциях ML, прежде чем погрузиться в практические аспекты реализации дизайна и управление высокопроизводительными приложениями ML. Он охватывает стратегии управления данными для ML, включая прием данных в режиме реального времени и управление версиями данных, а также важные аспекты защиты микросервисов ML и использования практик CI CD для оптимизации разработки и развертывания. Наконец, мы рассмотрим реальные примеры использования, демонстрирующие, как микросервисы ML революционизируют различные отрасли наряду со взглядом на захватывающие будущие тенденции, формирующие эту развивающуюся область.
Il est actuellement doctorat à l'Université de Waterloo, explorant l'intersection de l'IA et du blockchain. Suresh S est un expert logiciel expérimenté avec plus de vingt ans d'expérience dans la conception et la mise en œuvre de systèmes à grande échelle utilisant une architecture de microservices. Il a travaillé avec plusieurs sociétés figurant sur la liste Fortune 500 et possède une vaste connaissance de la conteneurisation du cloud computing et de la pratique de DevOps. Il est passionné par le partage de ses connaissances à travers des interventions publiques et l'écriture. Résumé de l'éditeurDans ce livre, nous explorons la fusion des microservices et de l'apprentissage automatique ML et son impact sur les industries. Nous approfondirons les principes de l'architecture des microservices et leur application pour le développement et le déploiement de ML, vous offrant une compréhension complète de la façon dont ces technologies peuvent être utilisées ensemble pour créer des systèmes évolutifs, efficaces et sécurisés. livre commence par créer une base dans les principes des microservices et les concepts de base de ML, avant de s'immerger dans les aspects pratiques de la mise en œuvre de la conception et de la gestion des applications de ML haute performance. Il couvre les stratégies de gestion des données pour ML, y compris la réception des données en temps réel et la gestion des versions des données, ainsi que les aspects importants de la protection des microservices ML et de l'utilisation des pratiques CI CD pour optimiser le développement et le déploiement. Enfin, nous examinerons des exemples réels d'utilisation montrant comment les microservices ML révolutionnent différentes industries, ainsi qu'un regard sur les tendances futures passionnantes qui façonnent ce domaine en évolution.
Actualmente es candidato de Ciencias por la Universidad de Waterloo, investigando la intersección de IA y blockchain. Suresh S es un experto en software con más de veinte de experiencia en el diseño e implementación de sistemas a gran escala utilizando la arquitectura de microservicios. Ha trabajado con varias empresas de la lista Fortune 500 y tiene un amplio conocimiento en el campo de la computación en la nube contenedor y las prácticas de DevOps. apasiona compartir sus conocimientos a través de las apariciones públicas y la escritura. Resumen del editorEn este libro exploramos la fusión de microservicios y aprendizaje automático de ML y su impacto en las industrias. Profundizamos en los principios de la arquitectura de microservicios y sus aplicaciones para el desarrollo e implementación de ML, brindándole una comprensión completa de cómo estas tecnologías se pueden usar juntas para crear sistemas escalables eficientes y seguros. libro comienza con la creación de una base en los principios de microservicios y conceptos básicos de ML antes de sumergirse en los aspectos prácticos de la implementación del diseño y la gestión de aplicaciones de ML de alto rendimiento. Abarca estrategias de gestión de datos para ML, incluida la recepción de datos en tiempo real y la gestión de versiones de datos, así como aspectos importantes de la protección de microservicios ML y el uso de prácticas de CD de CI para optimizar el desarrollo y la implementación. Finalmente, veremos ejemplos reales de uso que demuestran cómo los microservicios de ML están revolucionando diferentes industrias junto con una visión de las emocionantes tendencias futuras que forman este campo en desarrollo.
Derzeit ist er Doktorand an der University of Waterloo und erforscht die Schnittstelle von KI und Blockchain. Suresh S ist ein erfahrener Softwarespezialist mit mehr als zwanzig Jahren Erfahrung in der Konzeption und Implementierung von Großsystemen mit Microservices-Architektur. Er hat mit mehreren Fortune-500-Unternehmen zusammengearbeitet und verfügt über umfassende Kenntnisse der Cloud-Computing-Containerisierung und DevOps-Praktiken. Er ist leidenschaftlich daran interessiert, sein Wissen durch öffentliche Reden und Schreiben zu teilen. Publisher ZusammenfassungIn diesem Buch untersuchen wir die Verschmelzung von Microservices und ML Machine arning und ihre Auswirkungen auf Branchen. Wir vertiefen uns in die Prinzipien der Microservices-Architektur und deren Anwendung für die ML-Entwicklung und -Bereitstellung und geben Ihnen ein umfassendes Verständnis dafür, wie diese Technologien zusammen genutzt werden können, um skalierbare, effiziente und sichere Systeme zu schaffen. Das Buch beginnt mit der Schaffung einer Grundlage in den Prinzipien von Microservices und ML-Kernkonzepten, bevor es in die praktischen Aspekte der Designumsetzung und des Managements von ML-Hochleistungsanwendungen eintaucht. Es umfasst Datenmanagementstrategien für ML, einschließlich Echtzeitdatenempfang und Datenversionierung, sowie wichtige Aspekte der cherung von ML Microservices und des Einsatzes von CI CD-Praktiken zur Optimierung von Entwicklung und Bereitstellung. Schließlich werfen wir einen Blick auf reale Anwendungsfälle, die zeigen, wie ML Microservices verschiedene Branchen revolutionieren, zusammen mit einem Blick auf die spannenden Zukunftstrends, die diesen aufstrebenden Bereich prägen.
''
Şu anda Waterloo Üniversitesi'nde AI ve blockchain'in kesişimini araştıran bir doktora adayı. Suresh S, mikro hizmet mimarisini kullanarak büyük ölçekli sistemleri tasarlama ve uygulama konusunda yirmi yılı aşkın deneyime sahip deneyimli bir yazılım uzmanıdır. Birkaç Fortune 500 şirketiyle çalıştı ve bulut konteynerizasyonu ve DevOps uygulamaları hakkında geniş bilgiye sahip. Bilgilerini halka açık konuşma ve yazma yoluyla paylaşma konusunda tutkulu. Bu kitapta, ML'nin mikro hizmetlerinin ve makine öğreniminin birleşmesini ve endüstriler üzerindeki etkisini inceliyoruz. Mikro hizmet mimarisinin ilkelerini ve bunların ML geliştirme ve dağıtımına uygulamalarını inceleyerek, bu teknolojilerin ölçeklenebilir, verimli ve güvenli sistemler oluşturmak için birlikte nasıl kullanılabileceğini kapsamlı bir şekilde anlamanızı sağlıyoruz. Kitap, tasarım uygulamasının pratik yönlerini ve yüksek performanslı ML uygulamalarının yönetimini incelemeden önce mikro hizmet ilkelerine ve ML'nin temel kavramlarına temel atarak başlar. Gerçek zamanlı veri alımı ve veri sürümü oluşturma dahil olmak üzere ML için veri yönetimi stratejilerinin yanı sıra ML mikro servislerini korumanın ve geliştirme ve dağıtımı optimize etmek için CD CI uygulamalarını kullanmanın önemli yönlerini kapsar. Son olarak, ML mikro hizmetlerinin farklı endüstrilerde nasıl devrim yarattığını gösteren gerçek dünyadaki kullanım durumlarına ve bu gelişmekte olan alanı şekillendiren heyecan verici gelecek trendlerine bir göz atıyoruz.
وهو حاليًا مرشح دكتوراه في جامعة واترلو، ويبحث في تقاطع الذكاء الاصطناعي و blockchain. Suresh S هو محترف برمجيات متمرس لديه أكثر من عقدين من الخبرة في تصميم وتنفيذ أنظمة واسعة النطاق باستخدام بنية الخدمات الدقيقة. لقد عمل مع العديد من شركات Fortune 500 ولديه معرفة واسعة بحاويات السحابة وممارسات DevOps. إنه شغوف بمشاركة معرفته من خلال الخطابة والكتابة. ملخص الناشر في هذا الكتاب، نستكشف دمج خدمات ML الدقيقة والتعلم الآلي وتأثيرها على الصناعات. نحن نتعمق في مبادئ بنية الخدمات الدقيقة وتطبيقها على تطوير ML ونشرها، مما يوفر لك فهمًا شاملاً لكيفية استخدام هذه التقنيات معًا لإنشاء أنظمة قابلة للتطوير وفعالة وآمنة. يبدأ الكتاب بوضع الأساس في مبادئ الخدمات الدقيقة والمفاهيم الأساسية لـ ML، قبل الخوض في الجوانب العملية لتنفيذ التصميم وإدارة تطبيقات ML عالية الأداء. وهو يغطي استراتيجيات إدارة البيانات المتعلقة بالرسوم المتحركة، بما في ذلك استقبال البيانات في الوقت الحقيقي وتحريرها، فضلاً عن الجوانب الهامة لحماية الخدمات المجهرية للرسوم المتحركة واستخدام ممارسات CD CI لتحسين التطوير والنشر. أخيرًا، نلقي نظرة على حالات الاستخدام في العالم الحقيقي التي توضح كيف تحدث خدمات ML الصغيرة ثورة في الصناعات المختلفة جنبًا إلى جنب مع نظرة على الاتجاهات المستقبلية المثيرة التي تشكل هذا المجال الناشئ.

You may also be interested in:

Microservices for Machine Learning Design, implement, and manage high-performance ML systems with microservices
Microservices for Machine Learning Design, implement, and manage high-performance ML systems with microservices
Microservices for Machine Learning: Design, implement, and manage high-performance ML systems with microservices (English Edition)
Machine Learning in Microservices: Productionizing microservices architecture for machine learning solutions
Statistics for Machine Learning Implement Statistical methods used in Machine Learning using Python
Machine Learning Step-by-Step Guide To Implement Machine Learning Algorithms with Python
Applied Deep Learning Design and implement your own Neural Networks to solve real-world problems
Design of Intelligent Applications using Machine Learning and Deep Learning Techniques
Platform and Model Design for Responsible AI: Design and build resilient, private, fair, and transparent machine learning models
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Machine Learning with Python The Ultimate Guide for Absolute Beginners with Steps to Implement Artificial Neural Networks with Real Examples (Useful Python Tools eg. Anaconda, Jupiter Notebook)
Embracing Microservices Design: A practical guide to revealing anti-patterns and architectural pitfalls to avoid microservices fallacies
Learn OpenCV with Python by Examples: Implement Computer Vision Algorithms Provided by OpenCV with Python for Image Processing, Object Detection and Machine Learning
Learn OpenCV with Python by Examples Implement Computer Vision Algorithms Provided by OpenCV with Python for Image Processing, Object Detection and Machine Learning 2nd Edition
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Machine Learning and Optimization for Engineering Design
Machine Learning and Optimization for Engineering Design
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Artificial Intelligence and Machine Learning in Drug Design and Development
Artificial Intelligence, Machine Learning and User Interface Design
Machine Learning and Granular Computing A Synergistic Design Environment
Artificial Intelligence, Machine Learning and User Interface Design
Artificial Intelligence and Machine Learning in Drug Design and Development
Machine Learning-based Design and Optimization of High-Speed Circuits
Machine Learning in Production: Master the art of delivering robust Machine Learning solutions with MLOps (English Edition)
Machine Learning for Beginners An Introductory Guide to Learn and Understand Artificial Intelligence, Neural Networks and Machine Learning
Machine Learning for Business The Ultimate Artificial Intelligence & Machine Learning for Managers, Team Leaders and Entrepreneurs
Building Machine Learning Systems Using Python Practice to Train Predictive Models and Analyze Machine Learning Results
Microservices Design Patterns with Java 70+ Patterns for Designing, Building, and Deploying Microservices
Microservices Design Patterns with Java 70+ Patterns for Designing, Building, and Deploying Microservices
Serverless Machine Learning with Amazon Redshift ML: Create, train, and deploy machine learning models using familiar SQL commands
Applied Machine Learning and High-Performance Computing on AWS: Accelerate the development of machine learning applications following architectural best practices
Online Machine Learning: A Practical Guide with Examples in Python (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning for Data Streams with Practical Examples in MOA (Adaptive Computation and Machine Learning series)
Machine Learning Master Machine Learning Fundamentals for Beginners, Business Leaders and Aspiring Data Scientists
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Machine Learning with Core ML 2 and Swift A beginner-friendly guide to integrating machine learning into your apps
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python