BOOKS - Machine Learning for Subsurface Characterization
Machine Learning for Subsurface Characterization - Siddharth Misra October 27, 2019 PDF  BOOKS
ECO~22 kg CO²

2 TON

Views
91089

Telegram
 
Machine Learning for Subsurface Characterization
Author: Siddharth Misra
Year: October 27, 2019
Format: PDF
File size: PDF 22 MB
Language: English



Pay with Telegram STARS
The plot of the book 'Machine Learning for Subsurface Characterization' revolves around the need to understand and study the process of technology evolution, particularly in the field of machine learning, to ensure the survival of humanity and the unity of people in a war-torn world. The book focuses on the development and application of neural networks, random forests, deep learning, unsupervised learning, Bayesian frameworks, and clustering methods for subsurface characterization. As the world grapples with the challenges of climate change, energy security, and environmental sustainability, the need for accurate subsurface characterization has become more pressing than ever. Traditional methods of subsurface exploration and characterization are often time-consuming, expensive, and limited in their ability to provide comprehensive information about the subsurface environment. This is where machine learning comes into play, offering a powerful tool for processing large datasets and extracting valuable insights from them. The book begins by introducing the fundamentals of machine learning and its relevance to subsurface characterization. It explains how machine learning algorithms can learn to recognize patterns and quantify functional relationships by processing large data sets, also known as big data.
Сюжет книги «Машинное обучение для характеристики недр» вращается вокруг необходимости понимания и изучения процесса эволюции технологий, особенно в области машинного обучения, для обеспечения выживания человечества и единства людей в разрушенном войной мире. Книга посвящена разработке и применению нейронных сетей, случайных лесов, глубокого обучения, неконтролируемого обучения, байесовских структур и методов кластеризации для характеристики недр. По мере того, как мир борется с проблемами изменения климата, энергетической безопасности и экологической устойчивости, потребность в точной характеристике недр стала более насущной, чем когда-либо. Традиционные методы разведки и характеристики недр часто являются трудоемкими, дорогостоящими и ограниченными в их способности предоставлять исчерпывающую информацию о подземной среде. Здесь в игру вступает машинное обучение, предлагающее мощный инструмент для обработки больших наборов данных и извлечения из них ценной информации. Книга начинается с ознакомления с основами машинного обучения и его актуальностью для характеристики недр. Он объясняет, как алгоритмы машинного обучения могут научиться распознавать закономерности и количественно определять функциональные отношения, обрабатывая большие наборы данных, также известные как большие данные.
L'histoire du livre « L'apprentissage automatique pour caractériser le sous-sol » tourne autour de la nécessité de comprendre et d'étudier le processus d'évolution des technologies, en particulier dans le domaine de l'apprentissage automatique, pour assurer la survie de l'humanité et l'unité des gens dans un monde détruit par la guerre. livre traite du développement et de l'application des réseaux neuronaux, des forêts aléatoires, de l'apprentissage profond, de l'apprentissage non contrôlé, des structures bayésiennes et des méthodes de clustering pour caractériser le sous-sol. Alors que le monde s'attaque aux défis du changement climatique, de la sécurité énergétique et de la durabilité environnementale, le besoin d'une caractérisation précise du sous-sol est devenu plus urgent que jamais. s techniques traditionnelles d'exploration et les caractéristiques du sous-sol sont souvent longues, coûteuses et limitées dans leur capacité à fournir des informations complètes sur le milieu souterrain. C'est là que l'apprentissage automatique entre en jeu, offrant un outil puissant pour traiter de grands ensembles de données et en extraire des informations précieuses. livre commence par une introduction aux bases de l'apprentissage automatique et à sa pertinence pour la caractérisation du sous-sol. Il explique comment les algorithmes d'apprentissage automatique peuvent apprendre à reconnaître les schémas et à quantifier les relations fonctionnelles en traitant de grands ensembles de données, également connus sous le nom de Big Data.
La trama del libro Aprendizaje automático para caracterizar el subsuelo gira en torno a la necesidad de comprender y estudiar el proceso de evolución de la tecnología, especialmente en el campo del aprendizaje automático, para garantizar la supervivencia de la humanidad y la unidad de los seres humanos en un mundo destruido por la guerra. libro trata sobre el desarrollo y aplicación de redes neuronales, bosques aleatorios, aprendizaje profundo, aprendizaje incontrolado, estructuras bayesianas y técnicas de agrupamiento para caracterizar el subsuelo. A medida que el mundo se enfrenta a los desafíos del cambio climático, la seguridad energética y la sostenibilidad ambiental, la necesidad de caracterizar con precisión el subsuelo se ha vuelto más urgente que nunca. técnicas de exploración tradicionales y las características del subsuelo suelen ser laboriosas, costosas y limitadas en su capacidad para proporcionar información exhaustiva sobre el entorno subterráneo. Aquí entra en juego el aprendizaje automático, que ofrece una poderosa herramienta para procesar grandes conjuntos de datos y extraer información valiosa de ellos. libro comienza con una introducción a los fundamentos del aprendizaje automático y su relevancia para caracterizar el subsuelo. Explica cómo los algoritmos de aprendizaje automático pueden aprender a reconocer patrones y cuantificar relaciones funcionales procesando grandes conjuntos de datos, también conocidos como big data.
La trama del libro «Apprendimento automatico per la caratterizzazione del sottosuolo» ruota intorno alla necessità di comprendere e studiare l'evoluzione della tecnologia, in particolare nel campo dell'apprendimento automatico, per garantire la sopravvivenza dell'umanità e dell'unità umana in un mondo distrutto dalla guerra. Il libro è dedicato allo sviluppo e all'utilizzo di reti neurali, foreste casuali, formazione profonda, apprendimento incontrollato, strutture bayesiane e tecniche di clustering per la caratterizzazione del sottosuolo. Mentre il mondo affronta i cambiamenti climatici, la sicurezza energetica e la sostenibilità ambientale, l'esigenza di una descrizione precisa dell'entroterra è diventata più urgente che mai. I metodi tradizionali di esplorazione e le caratteristiche del sottosuolo sono spesso impegnativi, costosi e limitati nella loro capacità di fornire informazioni complete sull'ambiente sotterraneo. Qui entra in gioco l'apprendimento automatico, che offre un potente strumento per elaborare e estrarre dati di grandi dimensioni. Il libro inizia con la conoscenza delle basi dell'apprendimento automatico e la sua rilevanza per la caratterizzazione del sottosuolo. Spiega come gli algoritmi di apprendimento automatico possano imparare a riconoscere gli schemi e quantificare le relazioni funzionali, elaborando grandi set di dati, conosciuti anche come big data.
Die Handlung des Buches „Maschinelles rnen zur Charakterisierung des Untergrunds“ dreht sich um die Notwendigkeit, den Prozess der Technologieentwicklung zu verstehen und zu studieren, insbesondere im Bereich des maschinellen rnens, um das Überleben der Menschheit und die Einheit der Menschen in einer vom Krieg zerrütteten Welt zu gewährleisten. Das Buch konzentriert sich auf die Entwicklung und Anwendung von neuronalen Netzen, Random Forests, Deep arning, unkontrolliertem rnen, Bayes'schen Strukturen und Clustering-Techniken zur Charakterisierung des Untergrunds. Während die Welt mit den Herausforderungen des Klimawandels, der Energiesicherheit und der ökologischen Nachhaltigkeit zu kämpfen hat, ist die Notwendigkeit einer genauen Charakterisierung des Untergrunds dringender denn je. Traditionelle Explorationsmethoden und Untergrundcharakterisierungen sind oft zeitaufwändig, teuer und in ihrer Fähigkeit, umfassende Informationen über die Untergrundumgebung zu liefern, begrenzt. Hier kommt maschinelles rnen ins Spiel, das ein leistungsfähiges Werkzeug bietet, um große Datensätze zu verarbeiten und daraus wertvolle Informationen zu extrahieren. Das Buch beginnt mit einer Einführung in die Grundlagen des maschinellen rnens und seine Relevanz für die Charakterisierung des Untergrunds. Er erklärt, wie Algorithmen für maschinelles rnen lernen können, Muster zu erkennen und funktionale Beziehungen zu quantifizieren, indem sie große Datensätze, auch Big Data genannt, verarbeiten.
''
İç Mekanı Karakterize Etmek İçin Makine Öğreniminin konusu, özellikle makine öğrenimi alanında, insanlığın hayatta kalmasını ve savaşta parçalanmış bir dünyada insanların birliğini sağlamak için teknolojinin evrimini anlama ve inceleme ihtiyacı etrafında dönüyor. Kitap, sinir ağlarının, rastgele ormanların, derin öğrenmenin, denetimsiz öğrenmenin, Bayes yapılarının ve yeraltı yüzeyini karakterize etmek için kümeleme tekniklerinin geliştirilmesine ve uygulanmasına odaklanmaktadır. Dünya iklim değişikliği, enerji güvenliği ve çevresel sürdürülebilirliğin zorluklarıyla boğuşurken, doğru yeraltı karakterizasyonu ihtiyacı her zamankinden daha acil hale geldi. Geleneksel keşif yöntemleri ve yeraltı karakterizasyonu genellikle zahmetli, pahalı ve yeraltı ortamı hakkında kapsamlı bilgi sağlama yetenekleriyle sınırlıdır. Makine öğreniminin devreye girdiği yer burasıdır, büyük veri setlerini işlemek ve onlardan değerli bilgiler çıkarmak için güçlü bir araç sunar. Kitap, makine öğreniminin temellerine ve bunun yeraltının karakterizasyonu ile ilgisine bir giriş ile başlıyor. Makine öğrenimi algoritmalarının, büyük veri olarak da bilinen büyük veri kümelerini işleyerek kalıpları tanımayı ve işlevsel ilişkileri ölçmeyi nasıl öğrenebileceğini açıklıyor.
《表征底土的機器學習》一書的情節圍繞著理解和研究技術演變過程的必要性,特別是在機器學習領域,以確保人類在飽受戰爭蹂躪的世界中的生存和人類團結。該書致力於神經網絡,隨機森林,深度學習,無監督學習,貝葉斯結構以及表征底土的聚類技術的開發和應用。隨著世界與氣候變化、能源安全和環境可持續性等挑戰作鬥爭,準確描述地下土壤的需求比以往任何時候都更加迫切。傳統的勘探方法和底土特征通常是耗時的,昂貴的,並且在提供有關地下環境的全面信息的能力方面受到限制。在這裏,機器學習開始發揮作用,它提供了一個強大的工具來處理大型數據集並從中提取寶貴的信息。本書首先介紹了機器學習的基本原理及其對地下特征的相關性。他解釋了機器學習算法如何通過處理大型數據集(也稱為大數據)來學習識別模式並量化功能關系。

You may also be interested in:

Machine Learning for Subsurface Characterization
Data Science and Machine Learning Applications in Subsurface Engineering
Data Science and Machine Learning Applications in Subsurface Engineering
Data Science and Machine Learning Applications in Subsurface Engineering
Machine Learning Applications in Subsurface Energy Resource Management: State of the Art and Future Prognosis
Bayesian Machine Learning in Geotechnical Site Characterization
Multifrequency Electromagnetic Data Interpretation for Subsurface Characterization
Bayesian Machine Learning in Geotechnical Site Characterization (Challenges in Geotechnical and Rock Engineering)
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Machine Learning for Business The Ultimate Artificial Intelligence & Machine Learning for Managers, Team Leaders and Entrepreneurs
Building Machine Learning Systems Using Python Practice to Train Predictive Models and Analyze Machine Learning Results
Machine Learning for Beginners An Introductory Guide to Learn and Understand Artificial Intelligence, Neural Networks and Machine Learning
Machine Learning in Production: Master the art of delivering robust Machine Learning solutions with MLOps (English Edition)
Serverless Machine Learning with Amazon Redshift ML: Create, train, and deploy machine learning models using familiar SQL commands
Applied Machine Learning and High-Performance Computing on AWS: Accelerate the development of machine learning applications following architectural best practices
Online Machine Learning: A Practical Guide with Examples in Python (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning for Data Streams with Practical Examples in MOA (Adaptive Computation and Machine Learning series)
Machine Learning Master Machine Learning Fundamentals for Beginners, Business Leaders and Aspiring Data Scientists
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Robust Machine Learning: Distributed Methods for Safe AI (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning for Beginners Build and deploy Machine Learning systems using Python, 2nd Edition
Machine Learning with Core ML 2 and Swift A beginner-friendly guide to integrating machine learning into your apps
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming With Python 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning
Machine Learning, Animated (Chapman and Hall CRC Machine Learning and Pattern Recognition)
Machine Learning for Beginners A Practical Guide to Understanding and Applying Machine Learning Concepts
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning
Pragmatic Machine Learning with Python Learn How to Deploy Machine Learning Models in Production
Machine Learning for Absolute Beginners An Absolute beginner’s guide to learning and understanding machine learning successfully
Machine Learning with Python The Ultimate Guide to Learn Machine Learning Algorithms. Includes a Useful Section about Analysis, Data Mining and Artificial Intelligence in Business Applications
Machine Learning Tutorial: Machine Learning Simply Easy Learning