BOOKS - Low-Code AI: A Practical Project-Driven Introduction to Machine Learning
Low-Code AI: A Practical Project-Driven Introduction to Machine Learning - Gwendolyn Stripling Expected publication October 17, 2023 PDF  BOOKS
ECO~17 kg CO²

3 TON

Views
671162

 
Low-Code AI: A Practical Project-Driven Introduction to Machine Learning
Author: Gwendolyn Stripling
Year: Expected publication October 17, 2023
Format: PDF
File size: PDF 15 MB
Language: English



The plot of the book 'LowCode AI A Practical ProjectDriven Introduction to Machine Learning' revolves around the need for humans to study and comprehend the technological advancement process, which has led to the creation of artificial intelligence (AI) and its applications in various industries. The authors emphasize the significance of developing a personal paradigm for understanding the technological development of modern knowledge as the foundation for human survival and unity in a warring world. The story begins with the introduction of LowCode AI, a practical and hands-on approach to machine learning (ML) that focuses on real-world datasets and problem-solving. The authors, Michael Abel and Gwendolyn Stripling, guide readers through three case studies that demonstrate the use of AutoML, BigQuery ML, and custom code using scikit-learn and Keras to develop ML models. In the first case study, the authors illustrate how to use AutoML to build an ML model for a retail business, focusing on data loading, analysis, training, and deployment. They explain the importance of understanding the data feeding process into an ML model and the need for realistic problems to build a successful model. The second case study delves into healthcare, demonstrating how to use BigQuery ML to create an ML model for predicting patient outcomes. The authors highlight the significance of data analysis and the challenges of working with large datasets in the healthcare industry.
Сюжет книги «LowCode AI A Practical ProjectDriven Introduction to Machine arning» вращается вокруг необходимости изучения и осмысления человеком процесса технологического прогресса, что привело к созданию искусственного интеллекта (ИИ) и его приложений в различных отраслях. Авторы подчеркивают значимость выработки личностной парадигмы понимания технологического развития современного знания как фундамента выживания и единства человека в воюющем мире. История начинается с введения LowCode AI, практического и практического подхода к машинному обучению (ML), который фокусируется на реальных наборах данных и решении проблем. Авторы, Майкл Абель и Гвендолин Стриплинг, проводят читателей через три тематических исследования, которые демонстрируют использование AutoML, BigQuery ML и пользовательского кода с использованием scikit-learn и Keras для разработки моделей ML. В первом примере авторы иллюстрируют, как использовать AutoML для построения модели ML для розничного бизнеса, уделяя особое внимание загрузке данных, анализу, обучению и развертыванию. Они объясняют важность понимания процесса подачи данных в модель ML и необходимость реалистичных проблем для построения успешной модели. Второе тематическое исследование углубляется в здравоохранение, демонстрируя, как использовать BigQuery ML для создания модели ML для прогнозирования результатов лечения пациентов. Авторы подчеркивают важность анализа данных и проблемы работы с большими наборами данных в отрасли здравоохранения.
L'histoire du livre « LowCode AI A Practical ProjectDriven Introduction to Machine arning » tourne autour de la nécessité d'étudier et de comprendre le processus de progrès technologique, ce qui a conduit à la création de l'intelligence artificielle (IA) et de ses applications dans différents secteurs. s auteurs soulignent l'importance de l'élaboration d'un paradigme personnel pour comprendre le développement technologique des connaissances modernes en tant que fondement de la survie et de l'unité de l'homme dans un monde en guerre. L'histoire commence par l'introduction de LowCode AI, une approche pratique et pratique de l'apprentissage automatique (ML) qui se concentre sur les ensembles de données réelles et la résolution de problèmes. s auteurs, Michael Abel et Gwendolyn Stripping, guident les lecteurs à travers trois études de cas qui démontrent l'utilisation de AutoML, BigQuery ML et le code utilisateur en utilisant scikit-learn et Keras pour développer des modèles ML. Dans le premier exemple, les auteurs illustrent comment utiliser AutoML pour construire un modèle ML pour le commerce de détail, en mettant l'accent sur le chargement de données, l'analyse, la formation et le déploiement. Ils expliquent l'importance de comprendre le processus de dépôt des données dans le modèle ML et le besoin de défis réalistes pour construire un modèle réussi. La deuxième étude de cas se concentre sur les soins de santé, démontrant comment utiliser BigQuery ML pour créer un modèle ML pour prédire les résultats des patients. s auteurs soulignent l'importance de l'analyse des données et la difficulté de travailler avec de grands ensembles de données dans le secteur de la santé.
La trama del libro «LowCode AI A Practical ProjectDriven Introduction to Machine arning» gira en torno a la necesidad de que el hombre estudie y comprenda el proceso de progreso tecnológico, lo que ha llevado a la creación de inteligencia artificial (IA) y sus aplicaciones en diversas industrias. autores subrayan la importancia de desarrollar un paradigma personal para comprender el desarrollo tecnológico del conocimiento moderno como fundamento de la supervivencia y la unidad del hombre en un mundo en guerra. La historia comienza con la introducción de LowCode AI, un enfoque práctico y práctico del aprendizaje automático (ML) que se centra en conjuntos de datos reales y la resolución de problemas. autores, Michael Abel y Gwendolyn Stripling, llevan a los lectores a través de tres estudios de caso que demuestran el uso de AutoML, BigQuery ML y código personalizado utilizando scikit-learn y Keras para desarrollar modelos de ML. En el primer ejemplo, los autores ilustran cómo utilizar AutoML para construir un modelo de ML para el negocio minorista, centrándose en la carga de datos, el análisis, la formación y la implementación. Explican la importancia de entender el proceso de envío de datos al modelo ML y la necesidad de problemas realistas para construir un modelo exitoso. segundo estudio de caso profundiza en el cuidado de la salud, demostrando cómo usar BigQuery ML para crear un modelo de LM para predecir los resultados del tratamiento de los pacientes. autores destacan la importancia del análisis de datos y el desafío de trabajar con grandes conjuntos de datos en la industria de la salud.
A história do livro " AI A Pratical" Introdução to Machine arning "gira em torno da necessidade de uma pessoa estudar e refletir sobre o processo de progresso tecnológico, o que levou à criação de inteligência artificial (IA) e suas aplicações em vários setores. Os autores destacam a importância de criar um paradigma pessoal para compreender o desenvolvimento tecnológico do conhecimento moderno como fundamento da sobrevivência e da unidade humana no mundo em guerra. A história começa com a introdução da LowCode AI, uma abordagem prática e prática da aprendizagem de máquinas (ML) que se concentra em conjuntos de dados reais e na resolução de problemas. Os autores, Michael Abel e Gwendolyn Stripling, conduzem os leitores através de três estudos de caso que demonstram o uso de , ML e código personalizado usando scikit-learn e Keras para desenvolver modelos ML. No primeiro exemplo, os autores ilustram como usar o modelo ML para o varejo, com foco no download, análise, treinamento e implantação de dados. Eles explicam a importância de entender o processo de fornecimento de dados no modelo ML e a necessidade de problemas realistas para construir um modelo bem-sucedido. O segundo estudo de caso é aprofundado na saúde, mostrando como usar o ML para criar um modelo de ML para prever os resultados do tratamento de pacientes. Os autores destacam a importância da análise de dados e o desafio de lidar com grandes conjuntos de dados no setor de saúde.
La trama del libro " AI A Pratical" Introduction to Machine arning "ruota intorno alla necessità di studiare e comprendere il processo di progresso tecnologico che ha portato alla creazione di intelligenza artificiale (IA) e delle sue applicazioni in diversi settori. Gli autori sottolineano l'importanza di sviluppare un paradigma personale per comprendere lo sviluppo tecnologico della conoscenza moderna come fondamento della sopravvivenza e dell'unità umana nel mondo in guerra. La storia inizia con l'introduzione dell'AI, un approccio pratico e pratico all'apprendimento automatico (ML) che si concentra sui dataset reali e sulla risoluzione dei problemi. Gli autori, Michael Abel e Gwendolyn Stripling, conducono i lettori attraverso tre studi di caso che dimostrano l'uso di AutoML, BigQuery ML e codice utente utilizzando scikit-learn e Keras per sviluppare modelli di ML. Nel primo esempio, gli autori illustrano come utilizzare il modello ML per il retail, concentrandosi sul caricamento, l'analisi, la formazione e l'implementazione dei dati. Spiegano l'importanza di comprendere il processo di invio dei dati nel modello ML e la necessità di problemi realistici per creare un modello di successo. Il secondo studio si sta approfondendo nella sanità, dimostrando come utilizzare il BigQuery ML per creare un modello di ML per prevedere i risultati del trattamento dei pazienti. Gli autori sottolineano l'importanza dell'analisi dei dati e la difficoltà di gestire grandi set di dati nel settore sanitario.
Die Handlung des Buches „LowCode AI A Practical ProjectDriven Introduction to Machine arning“ dreht sich um die Notwendigkeit, den Prozess des technologischen Fortschritts zu untersuchen und zu verstehen, der zur Schaffung künstlicher Intelligenz (KI) und ihrer Anwendungen in verschiedenen Branchen geführt hat. Die Autoren betonen die Bedeutung der Entwicklung eines persönlichen Paradigmas für das Verständnis der technologischen Entwicklung des modernen Wissens als Grundlage für das Überleben und die Einheit des Menschen in einer kriegerischen Welt. Die Geschichte beginnt mit der Einführung von LowCode AI, einem praktischen und praktischen Ansatz für maschinelles rnen (ML), der sich auf reale Datensätze und Problemlösungen konzentriert. Die Autoren, Michael Abel und Gwendolyn Stripling, führen die ser durch drei Fallstudien, die die Verwendung von AutoML, BigQuery ML und benutzerdefiniertem Code mit scikit-learn und Keras zur Entwicklung von ML-Modellen demonstrieren. Im ersten Beispiel veranschaulichen die Autoren, wie AutoML zum Aufbau eines ML-Modells für das Einzelhandelsgeschäft verwendet werden kann, wobei der Schwerpunkt auf Datendownload, Analyse, Schulung und Bereitstellung liegt. e erklären, wie wichtig es ist, den Prozess der Dateneingabe in ein ML-Modell zu verstehen und wie wichtig realistische Herausforderungen für den Aufbau eines erfolgreichen Modells sind. Die zweite Fallstudie vertieft sich in die Gesundheitsversorgung und zeigt, wie BigQuery ML verwendet werden kann, um ein ML-Modell zur Vorhersage der Behandlungsergebnisse von Patienten zu erstellen. Die Autoren betonen die Bedeutung der Datenanalyse und die Herausforderungen im Umgang mit großen Datensätzen in der Gesundheitsbranche.
העלילה של הספר ”Lowcode AI A Practical Spective Introduction to Machine arning” סובבת סביב הצורך של אנשים ללמוד ולהבין את תהליך ההתקדמות הטכנולוגית, שהוביל ליצירת בינה מלאכותית (AI) ויישומיה בתעשיות שונות. המחברים מדגישים את החשיבות של פיתוח פרדיגמה אישית להבנת ההתפתחות הטכנולוגית של הידע המודרני כבסיס להישרדות ולאחדות אנושית בעולם לוחם. הסיפור מתחיל עם הקדמה של Lowcode AI, גישה ידנית וידית ללמידת מכונה (ML) המתמקדת במידע בעולם האמיתי ופתרון בעיות. המחברים, מייקל אייבל וגוונדולין סטריפלינג, מדריכים את הקוראים באמצעות שלושה מחקרי מקרים המדגימים את השימוש ב-AutoML, BigQuery ML וקוד מותאם אישית באמצעות סקיט-ללמוד ו-Kras לפיתוח מודלים של ML. בדוגמה הראשונה, המחברים ממחישים כיצד להשתמש ב-AutoML לבניית מודל ML לעסק קמעונאי, תוך התמקדות בטעינת נתונים, ניתוח, הכשרה ופריסה. הם מסבירים את החשיבות של הבנת תהליך ההזנה של נתונים לתוך מודל ML והצורך בבעיות מציאותיות כדי לבנות מודל מוצלח. המחקר השני מתעמק בתחום הבריאות, ומדגים כיצד להשתמש ב-BigQuery ML כדי ליצור מודל ML לחיזוי תוצאות המטופלים. המחברים מדגישים את חשיבות ניתוח הנתונים ואת האתגר בעבודה עם נתונים גדולים בתעשיית הבריאות.''
"LowCode AI A Practical ProjectDriven Introduction to Machine arning" kitabının konusu, insanların yapay zekanın (AI) ve çeşitli endüstrilerdeki uygulamalarının yaratılmasına yol açan teknolojik ilerleme sürecini inceleme ve anlama ihtiyacı etrafında dönüyor. Yazarlar, modern bilginin teknolojik gelişimini, savaşan bir dünyada insanın hayatta kalması ve birliği için temel olarak anlamak için kişisel bir paradigma geliştirmenin önemini vurgulamaktadır. Hikaye, gerçek dünyadaki veri kümelerine ve problem çözmeye odaklanan makine öğrenimine (ML) uygulamalı ve uygulamalı bir yaklaşım olan LowCode AI'nın tanıtımıyla başlıyor. Yazarlar, Michael Abel ve Gwendoline Stripling, ML modellerini geliştirmek için AutoML, BigQuery ML ve scikit-learn ve Keras kullanarak özel kod kullanımını gösteren üç vaka çalışmasında okuyuculara rehberlik etmektedir. İlk örnekte, yazarlar, bir perakende işletmesi için bir ML modeli oluşturmak için AutoML'nin nasıl kullanılacağını, veri yükleme, analiz, eğitim ve dağıtıma odaklandığını göstermektedir. Verileri ML modeline besleme sürecini anlamanın önemini ve başarılı bir model oluşturmak için gerçekçi problemlere duyulan ihtiyacı açıklarlar. İkinci vaka çalışması, hasta sonuçlarını tahmin etmek için bir ML modeli oluşturmak için BigQuery ML'nin nasıl kullanılacağını gösteren sağlık hizmetlerini incelemektedir. Yazarlar, veri analizinin önemini ve sağlık sektöründe büyük veri kümeleriyle çalışmanın zorluğunu vurgulamaktadır.
تدور حبكة كتاب «LowCode AI A Projective ProjectDrived Introduction to Machine arning» حول حاجة الناس إلى دراسة وفهم عملية التقدم التكنولوجي، مما أدى إلى إنشاء الذكاء الاصطناعي (AI) وتطبيقاته في مختلف الصناعات. يؤكد المؤلفون على أهمية تطوير نموذج شخصي لفهم التطور التكنولوجي للمعرفة الحديثة كأساس لبقاء الإنسان ووحدته في عالم متحارب. تبدأ القصة بإدخال LowCode AI، وهو نهج عملي وعملي للتعلم الآلي (ML) يركز على مجموعات بيانات العالم الحقيقي وحل المشكلات. يرشد المؤلفان، مايكل أبيل وجويندولين ستريبلينج، القراء من خلال ثلاث دراسات حالة توضح استخدام AutoML و BigQuery ML والرمز المخصص باستخدام scikit-learn و Keras لتطوير نماذج ML. في المثال الأول، يوضح المؤلفون كيفية استخدام AutoML لبناء نموذج ML لأعمال البيع بالتجزئة، مع التركيز على تحميل البيانات وتحليلها وتدريبها ونشرها. وهي توضح أهمية فهم عملية إدخال البيانات في نموذج ML والحاجة إلى مشاكل واقعية لبناء نموذج ناجح. تتعمق دراسة الحالة الثانية في الرعاية الصحية، وتوضح كيفية استخدام BigQuery ML لإنشاء نموذج ML للتنبؤ بنتائج المرضى. يؤكد المؤلفون على أهمية تحليل البيانات والتحدي المتمثل في العمل مع مجموعات بيانات كبيرة في صناعة الرعاية الصحية.
"LowCode AI A Practical ProjectDriven Introduction to Machine arning" 의 음모는 사람들이 기술 발전 과정을 연구하고 이해해야 할 필요성을 중심으로 인공 지능 (AI) 과 다양한 응용 분야에서 응용 프로그램을 만들었습니다. 저자는 전쟁 세계에서 인간 생존과 연합의 기초로서 현대 지식의 기술 발전을 이해하기위한 개인 패러다임 개발의 중요성을 강조합니다. 이 이야기는 실제 데이터 세트 및 문제 해결에 중점을 둔 기계 학습 (ML) 에 대한 실습 및 실습 접근 방식 인 LowCode AI의 도입으로 시작됩니다. 저자 인 Michael Abel과 Gwendoline Stripling은 스키 킷 학습과 Keras를 사용하여 ML 모델을 개발하는 Autokit, Bigquery ML 및 맞춤형 코드의 사용을 보여주는 세 가지 사례 연구를 통해 독자를 안내합니다. 첫 번째 예에서 저자는 데이터로드, 분석, 교육 및 배포에 중점을 둔 소매 비즈니스를위한 ML 모델을 구축하기 위해 AutomL을 사용하는 방법을 설명합니다. ML 모델에 데이터를 공급하는 프로세스를 이해하는 것의 중요성과 성공적인 모델을 구축하기위한 현실적인 문제의 필요성을 설명합니다. 두 번째 사례 연구는 의료 서비스를 탐구하여 Bigquery ML을 사용하여 환자 결과를 예측하기위한 ML 모델을 만드는 방법을 보여줍니다. 저자는 데이터 분석의 중요성과 의료 산업의 대규모 데이터 세트 작업의 과제를 강조합니다.
「LowCode AI A Practical ProjectDriven機器學習簡介」一書的情節圍繞著人類研究和理解技術進步過程的必要性展開,從而導致了人工智能(AI)及其在各個行業的應用。作者強調了建立理解現代知識的技術發展作為人類在交戰世界中生存和團結的基礎的人格範式的重要性。故事從引入LowCode AI開始,LowCode AI是一種實用的機器學習(ML)方法,專註於真實的數據集和問題解決。作者Michael Abel和Gwendolyn Stripling指導讀者進行三項案例研究,展示了使用AutoML,BigQuery ML和使用scikit-learn和Keras開發模型ML的自定義代碼。在第一個示例中,作者說明了如何使用AutoML構建零售業務的ML模型,重點是數據加載,分析,培訓和部署。他們解釋了解向ML模型提交數據的過程的重要性,以及構建成功模型時需要現實的問題。第二個案例研究深入研究醫療保健,展示了如何使用BigQuery ML創建ML模型來預測患者的治療結果。作者強調了數據分析的重要性和在醫療保健行業處理大型數據集的挑戰。

You may also be interested in:

Low-Code AI: A Practical Project-Driven Introduction to Machine Learning
Low-Code AI A Practical Project-Driven Introduction to Machine Learning (Final)
Low-Code AI A Practical Project-Driven Introduction to Machine Learning (Final)
PHP BASICS WITH PRACTICAL EXAMPLES AND PROJECT WITH SOURCE CODE
Arduino Project Handbook. 25 Practical Projects to Get You Started (+code)
Low Code Development with Mendix Developing state of the art innovative apps at speed with the Mendix low code development platform
The Python Application Architect|s Cookbook Building Real-World Apps with Practical Code Transforming Code into Applications
Learn Python Programming A Practical Introduction Guide for Python Programming. Learn Coding Faster with Hands-On Project. Crash Course
Developing ESP32 Project with Arduino Create Your Own IoT Project and Explore ESP32 World, Use Example Dummy Code Learn Every Aspect of ESP32
Learn Esp32 With Arduino - Practical Project Esp32 JTAG Debug, Programming Without Coding, IoT Project, GDB, MQTT And More
SQL A Practical Introduction Guide to Learn Sql Programming Language. Learn Coding Faster with Hands-On Project. Crash Course Guide for your Computer Programming
Learning Airtable: Building Database-Driven Applications with No-Code
Modern C++ Programming with Test-Driven Development: Code Better, Sleep Better
Real-World Software Development A Project-Driven Guide to Fundamentals in Java
Real-World Software Development: A Project-Driven Guide to Fundamentals in Java
Learning Airtable Building Database-Driven Applications with No-Code (Final)
Architecture Patterns with Python Enabling Test-Driven Development, Domain-Driven Design, and Event-Driven Microservices, First Edition
Ordinary Differential Equations: Example-driven, Including Maple Code (De Gruyter Textbook)
Разработка бизнес-приложений в Low-code платформе Loginom
AI-Driven Project Management: Harnessing the Power of Artificial Intelligence and ChatGPT to Achieve Peak Productivity and Success
AI-Driven Project Management Harnessing the Power of Artificial Intelligence and ChatGPT to Achieve Peak Productivity and Success
Biotech and IoT An Introduction Using Cloud-Driven Labs
How to Become a Data Analyst: My Low-Cost, No Code Roadmap for Breaking into Tech
Practical A B Testing: Creating Experimentation-Driven Products
Practical A/B Testing Creating Experimentation-Driven Products
Practical A/B Testing Creating Experimentation-Driven Products
Mastering Python 50 Specific Tips for Writing Better Code Practical Strategies for Writing High-Quality Python Code
Mastering Python 50 Specific Tips for Writing Better Code Practical Strategies for Writing High-Quality Python Code
Low-Code Development with Appsmith Building Internal Tools and Business Applications
Low-Code Development with Appsmith Building Internal Tools and Business Applications
Test-Driven React Find Problems Early, Fix Them Quickly, Code with Confidence, 2nd Edition
Test-Driven React Find Problems Early, Fix Them Quickly, Code with Confidence, 2nd Edition
Learning Microsoft Power Apps: Building Business Applications with Low-Code Technology
Effective Kafka A Hands-On Guide to Building Robust and Scalable Event-Driven Applications with Code Examples in Java
Renal Diet Cookbook: The Best low Sodium, low Potassium and low Phosphorus Recipes to Manage Kidney Disease
Practical Artificial Intelligence with Swift From Fundamental Theory to Development of AI-Driven Apps
Creating Data-Driven Web Sites An Introduction to HTML, CSS, PHP, and MySQL
Learning Microsoft Power Apps Building Business Applications with Low-Code Technology (Early Release)
Learning Microsoft Power Apps Building Business Applications with Low-Code Technology (Early Release)
Learning Microsoft Power Apps Building Business Applications with Low-Code Technology (Final Release)