BOOKS - Application of Machine Learning in Slope Stability Assessment
Application of Machine Learning in Slope Stability Assessment - Zhang Wengang July 9, 2023 PDF  BOOKS
ECO~19 kg CO²

2 TON

Views
11072

Telegram
 
Application of Machine Learning in Slope Stability Assessment
Author: Zhang Wengang
Year: July 9, 2023
Format: PDF
File size: PDF 7.7 MB
Language: English



Pay with Telegram STARS
Book Application of Machine Learning in Slope Stability Assessment Introduction: In this book, we explore the application of machine learning techniques in assessing the stability of slopes and preventing landslides, which is a critical issue in geotechnical engineering. The main objective is to provide a comprehensive overview of the current state-of-the-art in machine learning approaches for slope stability assessment, highlighting their strengths, weaknesses, and future research directions. We focus on the practical applications of various machine learning algorithms, including supervised, unsupervised, semi-supervised, reinforcement learning, deep learning, ensemble learning, and their hybrid combinations. Our goal is to demonstrate how these techniques can be used to predict slope stability and prevent landslides, ensuring the safety of infrastructure and human life. Chapter 1: Overview of Machine Learning Techniques in Slope Stability Assessment This chapter provides an introduction to the fundamental concepts of machine learning and their relevance to slope stability assessment. We discuss the mainstream smart insitu monitoring techniques and their applications in slope engineering, highlighting the advantages and limitations of each approach. We also introduce the basic principles of machine learning algorithms, including supervised, unsupervised, semi-supervised, and reinforcement learning, and their significance in predicting slope stability.
Book Application of Machine arning in Slope Stability Assessment Введение: В этой книге мы исследуем применение методов машинного обучения при оценке устойчивости склонов и предотвращении оползней, что является критической проблемой в геотехнической инженерии. Основная цель состоит в том, чтобы предоставить всесторонний обзор современного состояния подходов машинного обучения для оценки устойчивости склона, подчеркивая их сильные и слабые стороны, а также будущие направления исследований. Мы фокусируемся на практическом применении различных алгоритмов машинного обучения, включая контролируемое, неконтролируемое, полу-контролируемое, подкрепляющее обучение, глубокое обучение, обучение ансамблю и их гибридные комбинации. Наша цель - продемонстрировать, как эти методики могут быть использованы для прогнозирования устойчивости склонов и предотвращения оползней, обеспечения безопасности инфраструктуры и жизни людей. Глава 1: Обзор методов машинного обучения в оценке устойчивости склонов В этой главе представлено введение в фундаментальные концепции машинного обучения и их отношение к оценке устойчивости склонов. Мы обсуждаем основные методы интеллектуального мониторинга на месте и их применение в проектировании уклона, подчеркивая преимущества и ограничения каждого подхода. Мы также представляем основные принципы алгоритмов машинного обучения, включая обучение с учителем, без учителя, с полу учителем и с подкреплением, и их значение в прогнозировании стабильности уклона.
Book Application of Machine Arning in Slope Stability Assessment Introduction : Dans ce livre, nous étudions l'application des techniques d'apprentissage automatique dans l'évaluation de la stabilité des pentes et la prévention des glissements de terrain, un problème critique en ingénierie géotechnique. L'objectif principal est de fournir un aperçu complet de l'état actuel des approches d'apprentissage automatique pour évaluer la stabilité de la pente, en soulignant leurs forces et leurs faiblesses, ainsi que les orientations futures de la recherche. Nous nous concentrons sur l'application pratique de divers algorithmes d'apprentissage automatique, y compris l'apprentissage contrôlé, non contrôlé, semi-contrôlé, étayant, l'apprentissage profond, l'apprentissage d'ensemble et leurs combinaisons hybrides. Notre objectif est de montrer comment ces techniques peuvent être utilisées pour prédire la stabilité des pentes et prévenir les glissements de terrain, assurer la sécurité des infrastructures et la vie des personnes. Chapitre 1 : Aperçu des méthodes d'apprentissage automatique dans l'évaluation de la stabilité des pentes Ce chapitre présente une introduction aux concepts fondamentaux de l'apprentissage automatique et à leur rapport avec l'évaluation de la stabilité des pentes. Nous discutons des principales méthodes de surveillance intelligente sur place et de leur application dans la conception de la pente, en soulignant les avantages et les limites de chaque approche. Nous présentons également les principes de base des algorithmes d'apprentissage automatique, y compris l'apprentissage avec un professeur, sans professeur, avec un professeur de sexe et avec des renforts, et leur importance dans la prévision de la stabilité de la pente.
Application of Machine arning in Slope Stability Assessment Introducción: En este libro investigamos la aplicación de técnicas de aprendizaje automático en la evaluación de la estabilidad de las laderas y la prevención de deslizamientos de tierra, que es un problema crítico en la ingeniería geotécnica. objetivo principal es ofrecer una visión global del estado actual de los enfoques de aprendizaje automático para evaluar la estabilidad de la pendiente, destacando sus fortalezas y debilidades, así como futuras líneas de investigación. Nos centramos en la aplicación práctica de una variedad de algoritmos de aprendizaje automático, incluyendo el aprendizaje controlado, no controlado, semi-controlado, reforzado, aprendizaje profundo, aprendizaje de conjunto y sus combinaciones híbridas. Nuestro objetivo es demostrar cómo se pueden utilizar estas técnicas para predecir la estabilidad de los taludes y prevenir deslizamientos de tierra, garantizar la seguridad de la infraestructura y la vida de las personas. Capítulo 1: Revisión de las técnicas de aprendizaje automático en la evaluación de la estabilidad de las laderas Este capítulo presenta una introducción a los conceptos fundamentales del aprendizaje automático y su relación con la evaluación de la estabilidad de las laderas. Discutimos las principales técnicas de monitoreo inteligente in situ y su aplicación en el diseño de pendiente, destacando las ventajas y limitaciones de cada enfoque. También presentamos los principios básicos de los algoritmos de aprendizaje automático, incluyendo el aprendizaje con un profesor, sin un profesor, con un profesor de sexo y con refuerzos, y su importancia en la predicción de la estabilidad de la pendiente.
Buchanwendung Maschinelles rnen in der Slope Stability Assessment Einleitung: In diesem Buch untersuchen wir die Anwendung von maschinellen rntechniken bei der Beurteilung der Stabilität von Hängen und der Verhinderung von Erdrutschen, einem kritischen Thema in der Geotechnik. Hauptziel ist es, einen umfassenden Überblick über den Stand der Technik von Machine-arning-Ansätzen zur Beurteilung der Hangstabilität zu geben und deren Stärken und Schwächen sowie zukünftige Forschungsrichtungen hervorzuheben. Wir konzentrieren uns auf die praktische Anwendung verschiedener Algorithmen für maschinelles rnen, einschließlich kontrollierter, unkontrollierter, halbkontrollierter, unterstützender, Deep arning, Ensemble-Training und deren Hybridkombinationen. Unser Ziel ist es, zu zeigen, wie diese Techniken verwendet werden können, um die Stabilität von Hängen vorherzusagen und Erdrutsche zu verhindern, die Infrastruktur und das ben der Menschen zu sichern. Kapitel 1: Überblick über Methoden des maschinellen rnens in der Pistenstabilitätsbewertung Dieses Kapitel bietet eine Einführung in die grundlegenden Konzepte des maschinellen rnens und ihre Beziehung zur Pistenstabilitätsbewertung. Wir diskutieren die wichtigsten Methoden der intelligenten Vor-Ort-Überwachung und ihre Anwendung in der Hanggestaltung und betonen die Vorteile und Grenzen jedes Ansatzes. Wir präsentieren auch die Grundprinzipien von Algorithmen für maschinelles rnen, einschließlich des rnens mit dem hrer, ohne den hrer, mit dem hrer und mit Verstärkung, und ihre Bedeutung bei der Vorhersage der Stabilität der Neigung.
''
Makine Öğreniminin Eğim Kararlılığı Değerlendirmesinde Kitap Uygulaması Giriş: Bu kitapta, makine öğrenimi tekniklerinin eğim kararlılığı değerlendirmesinde ve jeoteknik mühendisliğinde kritik bir konu olan heyelan önlemede uygulanmasını araştırıyoruz. Temel amaç, eğim istikrarını değerlendirmek, güçlü ve zayıf yönlerini ve gelecekteki araştırma yönlerini vurgulamak için makine öğrenimi yaklaşımlarının mevcut durumuna kapsamlı bir genel bakış sağlamaktır. Denetimli, kontrolsüz, yarı denetimli, takviye öğrenme, derin öğrenme, topluluk öğrenme ve bunların hibrit kombinasyonları dahil olmak üzere çeşitli makine öğrenme algoritmalarının pratik uygulamasına odaklanıyoruz. Amacımız, bu tekniklerin eğimlerin stabilitesini tahmin etmek ve toprak kaymalarını önlemek, altyapının ve insanların hayatlarının güvenliğini sağlamak için nasıl kullanılabileceğini göstermektir. Bölüm 1: Eğim Kararlılığı Değerlendirmesinde Makine Öğrenimi Yöntemlerine Genel Bakış Bu bölüm, temel makine öğrenimi kavramlarına ve bunların eğim kararlılığı değerlendirmesi ile ilişkisine bir giriş sunmaktadır. Temel yerinde akıllı izleme tekniklerini ve bunların eğim tasarımındaki uygulamalarını tartışıyor, her bir yaklaşımın yararlarını ve sınırlamalarını vurguluyoruz. Ayrıca denetimli, denetimsiz, yarı denetimli ve güçlendirilmiş öğrenme dahil olmak üzere makine öğrenme algoritmalarının temel prensiplerini ve bunların eğim stabilitesini tahmin etmedeki etkilerini sunuyoruz.
تطبيق كتاب التعلم الآلي في تقييم استقرار المنحدرات مقدمة: في هذا الكتاب، نستكشف تطبيق تقنيات التعلم الآلي في تقييم استقرار المنحدرات ومنع الانهيارات الأرضية، وهي قضية حاسمة في الهندسة الجيوتقنية. الهدف الأساسي هو تقديم نظرة عامة شاملة على الحالة الحالية لنهج التعلم الآلي لتقييم استقرار المنحدرات، وتسليط الضوء على نقاط قوتها وضعفها، واتجاهات البحث المستقبلية. نحن نركز على التطبيق العملي لخوارزميات التعلم الآلي المختلفة، بما في ذلك التعلم المعزز الخاضع للإشراف وغير المنضبط وشبه الخاضع للإشراف والتعلم المعزز والتعلم العميق والتعلم الجماعي وتركيباتها الهجينة. هدفنا هو إظهار كيف يمكن استخدام هذه التقنيات للتنبؤ باستقرار المنحدرات ومنع الانهيارات الأرضية، وضمان سلامة البنية التحتية وحياة الناس. الفصل 1: نظرة عامة على طرق التعلم الآلي في تقييم استقرار المنحدرات يقدم هذا الفصل مقدمة لمفاهيم التعلم الآلي الأساسية وعلاقتها بتقييم استقرار المنحدرات. نناقش تقنيات المراقبة الذكية الأساسية في الموقع وتطبيقها في تصميم المنحدرات، مع تسليط الضوء على فوائد وقيود كل نهج. نقدم أيضًا المبادئ الأساسية لخوارزميات التعلم الآلي، بما في ذلك التعلم الخاضع للإشراف وغير الخاضع للإشراف وشبه الخاضع للإشراف والمعزز، وآثارها في التنبؤ باستقرار المنحدر.

You may also be interested in:

Application of Machine Learning in Slope Stability Assessment
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Machine Learning The Ultimate Guide to Understand Artificial Intelligence and Big Data Analytics. Learn the Building Block Algorithms and the Machine Learning’s Application in the Modern Life
Machine Learning for Beginners A Math Guide to Mastering Deep Learning and Business Application. Understand How Artificial Intelligence, Data Science, and Neural Networks Work Through Real Examples
Machine Learning and Its Application A Quick Guide for Beginners
Application of Machine Learning Models in Agricultural and Meteorological Sciences
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Machine Learning Mastery A Comprehensive Guide to Unlocking the Power of Artificial Intelligence from Theory to Application, Master the Techniques and Algorithms that Drive AI Innovation
Machine Learning Mastery: A Comprehensive Guide to Unlocking the Power of Artificial Intelligence from Theory to Application, Master the Techniques and Algorithms that Drive AI Innovation
Machine Learning Mastery A Comprehensive Guide to Unlocking the Power of Artificial Intelligence from Theory to Application, Master the Techniques and Algorithms that Drive AI Innovation
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Python Data Science The Ultimate Crash Course, Tips, and Tricks to Learn Data Analytics, Machine Learning, and Their Application
Machine Learning in Production: Master the art of delivering robust Machine Learning solutions with MLOps (English Edition)
Machine Learning for Beginners An Introductory Guide to Learn and Understand Artificial Intelligence, Neural Networks and Machine Learning
Building Machine Learning Systems Using Python Practice to Train Predictive Models and Analyze Machine Learning Results
Machine Learning for Business The Ultimate Artificial Intelligence & Machine Learning for Managers, Team Leaders and Entrepreneurs
Applied Machine Learning and High-Performance Computing on AWS: Accelerate the development of machine learning applications following architectural best practices
Serverless Machine Learning with Amazon Redshift ML: Create, train, and deploy machine learning models using familiar SQL commands
Machine Learning for Data Streams with Practical Examples in MOA (Adaptive Computation and Machine Learning series)
Online Machine Learning: A Practical Guide with Examples in Python (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning Master Machine Learning Fundamentals for Beginners, Business Leaders and Aspiring Data Scientists
Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python
Machine Learning for Beginners Build and deploy Machine Learning systems using Python, 2nd Edition
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Robust Machine Learning: Distributed Methods for Safe AI (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning with Core ML 2 and Swift A beginner-friendly guide to integrating machine learning into your apps
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis
Programming With Python 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Machine Learning for Beginners A Practical Guide to Understanding and Applying Machine Learning Concepts
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning
Machine Learning, Animated (Chapman and Hall CRC Machine Learning and Pattern Recognition)
Pragmatic Machine Learning with Python Learn How to Deploy Machine Learning Models in Production
Machine Learning for Absolute Beginners An Absolute beginner’s guide to learning and understanding machine learning successfully
Machine Learning with Python The Ultimate Guide to Learn Machine Learning Algorithms. Includes a Useful Section about Analysis, Data Mining and Artificial Intelligence in Business Applications