BOOKS - Prompt Engineering for Generative AI Future-Proof Inputs for Reliable AI Outp...
Prompt Engineering for Generative AI Future-Proof Inputs for Reliable AI Outputs at Scale (Final Release) - James Phoenix, Mike Taylor 2024 PDF | EPUB RETAIL COPY O’Reilly Media, Inc. BOOKS
ECO~18 kg CO²

1 TON

Views
53761

Telegram
 
Prompt Engineering for Generative AI Future-Proof Inputs for Reliable AI Outputs at Scale (Final Release)
Author: James Phoenix, Mike Taylor
Year: 2024
Pages: 423
Format: PDF | EPUB RETAIL COPY
File size: 39.8 MB, 33.3 MB
Language: ENG



Pay with Telegram STARS
Prompt Engineering for Generative AI FutureProof Inputs for Reliable AI Outputs at Scale Final Release Introduction The rapid development of artificial intelligence (AI) has led to significant advancements in various fields, including natural language processing (NLP), computer vision, and machine learning. However, these advancements have also raised concerns about the potential misuse of AI, particularly in the context of generative AI, which can create convincing but fake information. To address this issue, prompt engineering has emerged as a crucial aspect of AI research, focusing on designing inputs that elicit reliable outputs from AI systems. This article will delve into the concept of prompt engineering, its significance in ensuring the reliability of AI outputs, and its potential applications in various domains. Chapter 1: The Evolution of Technology The evolution of technology has been a continuous process, with each innovation building upon previous ones. From the invention of the wheel to the development of the internet, technological progress has transformed human civilization. The current era of AI represents a significant milestone in this progression, as it has the potential to revolutionize numerous industries and aspects of our lives. However, the pace of technological change poses challenges for individuals and societies to keep up with the latest advancements. Chapter 2: The Need for Personal Paradigms As technology continues to advance, it is essential to develop personal paradigms for perceiving the technological process of developing modern knowledge. This involves understanding the underlying principles of AI, its capabilities, and limitations. By doing so, we can better navigate the complexities of AI and make informed decisions about its use.
Оперативное проектирование генерирующих ИИ FutureProof входных данных для надежных выходов ИИ в масштабе Окончательный выпуск Введение Быстрое развитие искусственного интеллекта (ИИ) привело к значительным достижениям в различных областях, включая обработку естественного языка (NLP), компьютерное зрение и машинное обучение. Тем не менее, эти достижения также вызвали обеспокоенность по поводу потенциального неправильного использования ИИ, особенно в контексте генеративного ИИ, который может создавать убедительную, но поддельную информацию. Чтобы решить эту проблему, быстрое проектирование стало решающим аспектом исследований ИИ, сосредоточив внимание на разработке входных данных, которые вызывают надежные результаты от систем ИИ. Эта статья углубится в концепцию оперативного инжиниринга, его значение в обеспечении надежности выходов ИИ и его потенциальные применения в различных областях. Глава 1: Эволюция технологии Эволюция технологии является непрерывным процессом, в котором каждая инновация опирается на предыдущие. От изобретения колеса до развития интернета технический прогресс преобразил человеческую цивилизацию. Нынешняя эра ИИ представляет собой значительную веху в этой прогрессии, поскольку она может революционизировать многочисленные отрасли и аспекты нашей жизни. Тем не менее, темпы технологических изменений создают проблемы для отдельных людей и обществ, чтобы идти в ногу с последними достижениями. Глава 2: Потребность в личных парадигмах По мере того, как технологии продолжают развиваться, важно разрабатывать личные парадигмы для восприятия технологического процесса развития современных знаний. Это предполагает понимание основополагающих принципов ИИ, его возможностей и ограничений. Тем самым мы сможем лучше ориентироваться в сложностях ИИ и принимать обоснованные решения о его использовании.
''

You may also be interested in:

Prompt Engineering for Generative AI: Future-Proof Inputs for Reliable AI Outputs
Prompt Engineering for Generative AI Future-Proof Inputs for Reliable AI Outputs at Scale (Final Release)
Prompt Engineering for Generative AI Future-Proof Inputs for Reliable AI Outputs at Scale (Final Release)
Prompt Engineering for Generative AI Future-Proof Inputs for Reliable AI Outputs at Scale (5th Early Release)
Prompt Engineering for Generative AI Future-Proof Inputs for Reliable AI Outputs at Scale (5th Early Release)
Prompt Engineering for Generative AI Future-Proof Inputs for Reliable AI Outputs at Scale (5th Early Release)
The Quick Guide to Prompt Engineering Generative AI Tips and Tricks for ChatGPT, Bard, Dall-E, and Midjourney
Prompt Engineering Handbook: A Complete Guide and Examples for Prompt Engineering Science from Scratch to Application
Generative Analysis: The Power of Generative AI for Object-Oriented Software Engineering with UML
Generative Analysis The Power of Generative AI for Object-Oriented Software Engineering with UML (Early Release)
Generative Analysis The Power of Generative AI for Object-Oriented Software Engineering with UML (Early Release)
ChatGPT Business Prompt Playbook: Start an Affiliate Marketing Blog with AI: The best ChatGPT books written by a human (Prompt Entrepreneur : Prompt Playbooks)
Prompt Engineering Empowering Communication
Prompt Engineering Empowering Communication
Prompt Engineering Master Guide
Prompt Engineering for Beginners Making A.I. Work for You
Prompt Engineering Using ChatGPT Crafting Effective Interactions and Building GPT Apps
Prompt Engineering Using ChatGPT : Crafting Effective Interactions and Building GPT Apps
Prompt Engineering Using ChatGPT Crafting Effective Interactions and Building GPT Apps
The Art of Asking ChatGPT for High-Quality Answers: A Complete Guide to Prompt Engineering Techniques
Prompt Engineering for LLMs The Art and Science of Building Large Language Model-Based Applications
Prompt Engineering for LLMs The Art and Science of Building Large Language Model-Based Applications
LLM Prompt Engineering For Developers The Art and Science of Unlocking LLMs| True Potential
Identifying Future-Proof Science
LLM Prompt Engineering For Developers The Art and Science of Unlocking LLMs| True Potential (2024)
LLM Prompt Engineering For Developers The Art and Science of Unlocking LLMs| True Potential (2024)
Unlocking the Secrets of Prompt Engineering: Master the art of creative language generation to accelerate your journey from novice to pro
The Future-Proof Career: Strategies for thriving at every stage
Ruby Programming Building Future-proof Scalable Applications
The Strategy Legacy: How to Future-Proof a Business and Leave Your Mark
Generative AI Navigating the Course to the Artificial General Intelligence Future
Generative AI: Navigating the Course to the Artificial General Intelligence Future
The ChatGPT GoldRush: Profiting from the AI Revolution Online: Prompt Engineering Mastery with ChatGPT
Programming Large Language Models With Azure Open AI Conversational Programming and Prompt Engineering With LLMs
Programming Large Language Models With Azure Open AI Conversational Programming and Prompt Engineering With LLMs
Kill It with Fire Manage Aging Computer Systems (and Future Proof Modern Ones)
Stay Fit for Life More than 60 Exercises to Restore Your Strength and Future-Proof Your Body
Kill It with Fire: Manage Aging Computer Systems (and Future Proof Modern Ones)
Programming Large Language Models with Azure Open AI: Conversational programming and prompt engineering with LLMs (Developer Reference)