BOOKS - Deep Learning at Scale At the Intersection of Hardware, Software, and Data (F...
Deep Learning at Scale At the Intersection of Hardware, Software, and Data (Final Release) - Suneeta Mall 2024 /RETAIL PDF | EPUB RETAIL COPY O’Reilly Media, Inc. BOOKS
ECO~18 kg CO²

1 TON

Views
4839

Telegram
 
Deep Learning at Scale At the Intersection of Hardware, Software, and Data (Final Release)
Author: Suneeta Mall
Year: 2024
Pages: 448
Format: /RETAIL PDF | EPUB RETAIL COPY
File size: 35.6 MB
Language: ENG



Pay with Telegram STARS
Deep Learning at Scale At the Intersection of Hardware Software and Data Final Release is a book that explores the intersection of hardware, software, and data in deep learning, highlighting the challenges and opportunities that come with scaling up deep learning models to meet the needs of a rapidly changing world. The book provides a comprehensive overview of the current state of deep learning research and its applications in various fields such as computer vision, natural language processing, and speech recognition. It also delves into the technical aspects of deep learning, including the development of new algorithms and architectures, and the use of specialized hardware and software to accelerate training and inference. Additionally, the book discusses the ethical implications of deep learning and its potential impact on society. The book begins by examining the history of deep learning and how it has evolved over time, from its early beginnings to the current state-of-the-art techniques used today. It then delves into the fundamental principles of deep learning, including the different types of neural networks and their applications, and the role of data in driving the success of deep learning models. The book also explores the challenges of scaling up deep learning models, including the need for large amounts of data, computational power, and specialized hardware.
Deep arning at Scale At The Intersection of Hardware Software and Data Final Release - книга, в которой исследуется пересечение аппаратного обеспечения, программного обеспечения и данных в глубоком обучении, освещаются проблемы и возможности, возникающие при масштабировании моделей глубокого обучения для удовлетворения потребностей быстро меняющегося мира. В книге представлен всесторонний обзор текущего состояния исследований в области глубокого обучения и его приложений в различных областях, таких как компьютерное зрение, обработка естественного языка и распознавание речи. Он также углубляется в технические аспекты глубокого обучения, включая разработку новых алгоритмов и архитектур, а также использование специализированного аппаратного и программного обеспечения для ускорения обучения и вывода. Кроме того, в книге обсуждаются этические последствия глубокого обучения и его потенциальное влияние на общество. Книга начинается с изучения истории глубокого обучения и того, как оно развивалось с течением времени, от его ранних истоков до современных современных методов, используемых сегодня. Затем он углубляется в фундаментальные принципы глубокого обучения, включая различные типы нейронных сетей и их приложений, а также роль данных в достижении успеха моделей глубокого обучения. В книге также рассматриваются проблемы масштабирования моделей глубокого обучения, включая потребность в больших объемах данных, вычислительной мощности и специализированном оборудовании.
Deep arning at Scale At The Intersection of Hardware Software and Data Final Release - un livre qui explore l'intersection du matériel, des logiciels et des données en apprentissage profond, met en lumière les défis et les opportunités qui se présentent lors de la mise à l'échelle des modèles d'apprentissage profond pour répondre aux besoins d'un monde en évolution rapide. livre présente un aperçu complet de l'état actuel de la recherche dans le domaine de l'apprentissage profond et de ses applications dans divers domaines tels que la vision par ordinateur, le traitement du langage naturel et la reconnaissance vocale. Il s'intéresse également aux aspects techniques de l'apprentissage profond, y compris le développement de nouveaux algorithmes et architectures, ainsi que l'utilisation de matériel et de logiciels spécialisés pour accélérer l'apprentissage et la sortie. En outre, le livre traite des implications éthiques de l'apprentissage profond et de son impact potentiel sur la société. livre commence par une étude de l'histoire de l'apprentissage profond et de la façon dont il a évolué au fil du temps, depuis ses débuts jusqu'aux méthodes modernes utilisées aujourd'hui. Il s'oriente ensuite vers les principes fondamentaux de l'apprentissage profond, y compris les différents types de réseaux neuronaux et leurs applications, ainsi que le rôle des données dans la réussite des modèles d'apprentissage profond. livre aborde également les problèmes de mise à l'échelle des modèles d'apprentissage profond, y compris la demande de grandes quantités de données, de puissance de calcul et de matériel spécialisé.
Deep arning at Scale At The Intersection of Hardware Software and Data Final Release es un libro que explora la intersección de hardware, software y datos en el aprendizaje profundo, destaca los desafíos y oportunidades que surgen al escalar modelos de aprendizaje profundo para satisfacer las necesidades de un mundo que cambia rápidamente. libro ofrece una visión general completa del estado actual de la investigación en el campo del aprendizaje profundo y sus aplicaciones en diversos campos como la visión por computadora, el procesamiento del lenguaje natural y el reconocimiento del habla. También profundiza en los aspectos técnicos del aprendizaje profundo, incluyendo el desarrollo de nuevos algoritmos y arquitecturas, y el uso de hardware y software especializados para acelerar el aprendizaje y la salida. Además, el libro analiza las implicaciones éticas del aprendizaje profundo y su potencial impacto en la sociedad. libro comienza con el estudio de la historia del aprendizaje profundo y cómo se desarrolló a lo largo del tiempo, desde sus primeros orígenes hasta los modernos métodos modernos utilizados en la actualidad. Luego se profundiza en los principios fundamentales del aprendizaje profundo, incluyendo los diferentes tipos de redes neuronales y sus aplicaciones, así como el papel de los datos para lograr el éxito de los modelos de aprendizaje profundo. libro también aborda los desafíos de escalar modelos de aprendizaje profundo, incluyendo la necesidad de grandes volúmenes de datos, potencia de procesamiento y hardware especializado.
Deep arning at Scale At The Intersection of Hardware Software and Data Final Release, un libro che esamina l'intersezione di hardware, software e dati nell'apprendimento approfondito, evidenzia i problemi e le opportunità che si presentano quando si scalano modelli di apprendimento approfondito per soddisfare le esigenze di un mondo in rapida evoluzione. Il libro fornisce una panoramica completa dello stato attuale della ricerca sull'apprendimento approfondito e delle sue applicazioni in diversi ambiti, come la visione dei computer, l'elaborazione del linguaggio naturale e il riconoscimento vocale. Approfondisce anche gli aspetti tecnici dell'apprendimento approfondito, tra cui lo sviluppo di nuovi algoritmi e architetture e l'utilizzo di hardware e software specializzati per accelerare l'apprendimento e l'output. Inoltre, il libro parla degli effetti etici dell'apprendimento profondo e del suo potenziale impatto sulla società. Il libro inizia studiando la storia dell'apprendimento profondo e come si è evoluto nel corso del tempo, dalle sue origini iniziali ai metodi moderni usati oggi. Approfondisce poi i principi fondamentali dell'apprendimento approfondito, tra cui diversi tipi di reti neurali e le relative applicazioni, nonché il ruolo dei dati nel successo dei modelli di apprendimento approfondito. Il libro affronta anche i problemi legati alla scalabilità dei modelli di apprendimento approfondito, tra cui la necessità di grandi quantità di dati, la potenza di elaborazione e l'hardware specializzato.
Deep arning at Scale At The Intersection of Hardware Software and Data Final Release ist ein Buch, das die Schnittstelle von Hardware, Software und Daten im Deep arning untersucht und die Herausforderungen und Chancen beleuchtet, die sich aus der Skalierung von Deep-arning-Modellen ergeben, um den Anforderungen einer sich schnell verändernden Welt gerecht zu werden. Das Buch bietet einen umfassenden Überblick über den aktuellen Stand der Deep-arning-Forschung und ihre Anwendungen in verschiedenen Bereichen wie Computer Vision, Natural Language Processing und Spracherkennung. Es vertieft sich auch in die technischen Aspekte des Deep arning, einschließlich der Entwicklung neuer Algorithmen und Architekturen sowie der Verwendung spezieller Hard- und Software, um das rnen und die Ausgabe zu beschleunigen. Darüber hinaus diskutiert das Buch die ethischen Implikationen von Deep arning und seine möglichen Auswirkungen auf die Gesellschaft. Das Buch beginnt mit einer Untersuchung der Geschichte des Deep arning und wie es sich im Laufe der Zeit entwickelt hat, von seinen frühen Ursprüngen bis zu den modernen modernen Methoden, die heute verwendet werden. Anschließend werden die grundlegenden Prinzipien von Deep arning, einschließlich der verschiedenen Arten von neuronalen Netzwerken und deren Anwendungen, sowie die Rolle von Daten beim Erfolg von Deep-arning-Modellen vertieft. Das Buch befasst sich auch mit den Herausforderungen bei der Skalierung von Deep-arning-Modellen, einschließlich des Bedarfs an großen Datenmengen, Rechenleistung und dedizierter Hardware.
Deep Arning at Scale At The Intersection of Hardware Software and Data Final Release) הוא ספר החוקר את הצטלבות החומרה, התוכנה והנתונים בלמידה עמוקה, ומדגיש את האתגרים וההזדמנויות של הגדלת מודלי למידה עמוקים כדי לענות לצרכיו. הספר מספק סקירה מקיפה של המצב הנוכחי של חקר הלמידה העמוקה ויישומיו בתחומים שונים כגון ראייה ממוחשבת, עיבוד שפה טבעית וזיהוי דיבור. הוא גם מתעמק בהיבטים הטכניים של למידה עמוקה, כולל פיתוח אלגוריתמים חדשים וארכיטקטורה, והשימוש בחומרה ותוכנה ייחודיים כדי להאיץ למידה ותפוקה. בנוסף לכך, הספר דן בהשלכות האתיות של למידה מעמיקה והשפעתה האפשרית על החברה. הספר מתחיל בבחינת ההיסטוריה של למידה מעמיקה וכיצד התפתח עם הזמן, החל ממקורותיו המוקדמים וכלה בשיטות מודרניות. לאחר מכן הוא מתעמק בעקרונות היסוד של למידה מעמיקה, כולל סוגים שונים של רשתות עצביות ויישומיהם, ותפקיד הנתונים בהצלחת מודלים ללמידה עמוקה. הספר מטפל גם באתגרים של הגדלת מודלים של למידה עמוקה, כולל הצורך בכמויות גדולות של נתונים, כוח מחשוב וחומרה מיוחדת.''
Donanım Yazılımı ve Verilerin Kesiştiği Noktada Ölçekte Derin Öğrenme, derin öğrenmede donanım, yazılım ve verilerin kesişimini araştıran, hızla değişen bir dünyanın ihtiyaçlarını karşılamak için derin öğrenme modellerini ölçeklendirmenin zorluklarını ve fırsatlarını vurgulayan bir kitaptır. Kitap, derin öğrenme araştırmalarının mevcut durumuna ve bilgisayar görüşü, doğal dil işleme ve konuşma tanıma gibi çeşitli alanlardaki uygulamalarına kapsamlı bir genel bakış sunmaktadır. Ayrıca, yeni algoritmaların ve mimarilerin geliştirilmesi ve öğrenmeyi ve çıktıyı hızlandırmak için özel donanım ve yazılımların kullanılması da dahil olmak üzere derin öğrenmenin teknik yönlerini inceler. Buna ek olarak, kitap derin öğrenmenin etik etkilerini ve toplum üzerindeki potansiyel etkisini tartışıyor. Kitap, derin öğrenmenin tarihini ve ilk kökenlerinden günümüzde kullanılan modern modern yöntemlere kadar zaman içinde nasıl geliştiğini inceleyerek başlıyor. Daha sonra, farklı sinir ağları ve uygulamaları da dahil olmak üzere derin öğrenmenin temel ilkelerini ve derin öğrenme modellerinin başarısında verilerin rolünü araştırıyor. Kitap ayrıca, büyük miktarda veri, bilgi işlem gücü ve özel donanım ihtiyacı da dahil olmak üzere derin öğrenme modellerini ölçeklendirmenin zorluklarını ele alıyor.
التعلم العميق على نطاق واسع عند تقاطع برامج الأجهزة والإصدار النهائي للبيانات هو كتاب يستكشف تقاطع الأجهزة والبرامج والبيانات في التعلم العميق، ويسلط الضوء على التحديات والفرص لتوسيع نطاق نماذج التعلم العميق لتلبية احتياجات عالم سريع التغير. يقدم الكتاب لمحة عامة شاملة عن الوضع الحالي لبحوث التعلم العميق وتطبيقاته في مجالات مختلفة مثل رؤية الكمبيوتر ومعالجة اللغة الطبيعية والتعرف على الكلام. كما أنه يتعمق في الجوانب التقنية للتعلم العميق، بما في ذلك تطوير خوارزميات وهياكل جديدة، واستخدام الأجهزة والبرامج المتخصصة لتسريع التعلم والإخراج. بالإضافة إلى ذلك، يناقش الكتاب الآثار الأخلاقية للتعلم العميق وتأثيره المحتمل على المجتمع. يبدأ الكتاب بفحص تاريخ التعلم العميق وكيف تطور بمرور الوقت، من أصوله المبكرة إلى الأساليب الحديثة الحديثة المستخدمة اليوم. ثم يتعمق في المبادئ الأساسية للتعلم العميق، بما في ذلك الأنواع المختلفة من الشبكات العصبية وتطبيقاتها، ودور البيانات في نجاح نماذج التعلم العميق. يتناول الكتاب أيضًا تحديات توسيع نطاق نماذج التعلم العميق، بما في ذلك الحاجة إلى كميات كبيرة من البيانات وقوة الحوسبة والأجهزة المتخصصة.
硬件軟件和數據最終版本的相互作用中的深層偵察是一本書,探討了硬件、軟件和數據在深度學習中的交集,突出了擴大深度學習模式以滿足快速變化的世界需求時遇到的挑戰和機遇。該書全面概述了深度學習研究的現狀及其在計算機視覺,自然語言處理和語音識別等各個領域的應用。它還深入研究深度學習的技術方面,包括開發新的算法和體系結構,以及使用專門的硬件和軟件來加快學習和輸出。此外,該書還討論了深度學習的倫理影響及其對社會的潛在影響。這本書首先研究了深度學習的歷史以及它如何隨著時間的流逝而發展,從早期的起源到當今使用的現代方法。然後深入研究深度學習的基本原理,包括不同類型的神經網絡及其應用,以及數據在實現深度學習模型成功中的作用。該書還探討了擴展深度學習模型的挑戰,包括對大量數據,計算能力和專業硬件的需求。

You may also be interested in:

Deep Learning at Scale (Third Early Release)
Deep Learning Systems Algorithms, Compilers, and Processors for Large-Scale Production
Deep Learning at Scale At the Intersection of Hardware, Software, and Data (Third Early Release)
Deep Learning at Scale At the Intersection of Hardware, Software, and Data (Final Release)
Deep Learning at Scale At the Intersection of Hardware, Software, and Data (Third Early Release)
Deep Learning at Scale At the Intersection of Hardware, Software, and Data (Final Release)
Deep Learning for Data Architects: Unleash the power of Python|s deep learning algorithms (English Edition)
Java Deep Learning Projects: Implement 10 real-world deep learning applications using Deeplearning4j and open source APIs
Deep Learning for the Life Sciences Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More First Edition
Building Scalable Deep Learning Pipelines on AWS Develop, Train, and Deploy Deep Learning Models
Getting started with Deep Learning for Natural Language Processing Learn how to build NLP applications with Deep Learning
Deep Learning fur die Biowissenschaften Einsatz von Deep Learning in Genomik, Biophysik, Mikroskopie und medizinischer Analyse
Anatomy of Deep Learning Principles: Writing a deep learning library from scratch (Japanese Edition)
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Deep Learning for Data Architects Unleash the power of Python|s deep learning algorithms
Deep Learning for the Life Sciences Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Deep Learning for Data Architects Unleash the power of Python|s deep learning algorithms
Programming PyTorch for Deep Learning Creating and Deploying Deep Learning Applications First Edition
Deep Learning With Python Develop Deep Learning Models on Theano and TensorFlow using Keras
Practical Mathematics for AI and Deep Learning: A Concise yet In-Depth Guide on Fundamentals of Computer Vision, NLP, Complex Deep Neural Networks and Machine Learning (English Edition)
Deep Learning Beginner’s Guide to Learn the Realms of Deep Learning from A-Z
Mastering Deep Learning: A Comprehensive Guide to Master Deep Learning
Mastering Deep Learning A Comprehensive Guide to Master Deep Learning
Mastering Deep Learning A Comprehensive Guide to Master Deep Learning
Hands-on Deep Learning A Guide to Deep Learning with Projects and Applications
Neural Networks and Deep Learning Neural Networks & Deep Learning, Deep Learning, Big Data
Fundamentals of Machine & Deep Learning A Complete Guide on Python Coding for Machine and Deep Learning with Practical Exercises for Learners (Sachan Book 102)
Deep Learning with Python The Crash Course for Beginners to Learn the Basics of Deep Learning with Python Using TensorFlow, Keras and PyTorch
Deep Learning with Python Comprehensive Beginners Guide to Learn and Understand the Realms of Deep Learning with Python
Beginning with Deep Learning Using TensorFlow A Beginners Guide to TensorFlow and Keras for Practicing Deep Learning Principle
Deep Learning and Convolutional Neural Networks for Medical Image Computing: Precision Medicine, High Performance and Large-Scale Datasets (Advances in Computer Vision and Pattern Recognition)
Deep Learning With Python Simple and Effective Tips and Tricks to Learn Deep Learning with Python
Google JAX Essentials A quick practical learning of blazing-fast library for Machine Learning and Deep Learning projects
Deep Learning With Python Advanced and Effective Strategies of Using Deep Learning with Python Theories
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Artificial Intelligence What You Need to Know About Machine Learning, Robotics, Deep Learning, Recommender Systems, Internet of Things, Neural Networks, Reinforcement Learning, and Our Future
Deep Machine Learning Complete Tips and Tricks to Deep Machine Learning
Deep Learning with Python The Ultimate Beginners Guide for Deep Learning with Python