BOOKS - Machine Learning with Python
Machine Learning with Python - Tarkeshwar Barua, Kamal Kant Hiran, Ritesh Kumar Jain, Ruchi Doshi 2024 PDF De Gruyter BOOKS
ECO~18 kg CO²

1 TON

Views
7165

Telegram
 
Machine Learning with Python
Author: Tarkeshwar Barua, Kamal Kant Hiran, Ritesh Kumar Jain, Ruchi Doshi
Year: 2024
Pages: 486
Format: PDF
File size: 40.4 MB
Language: ENG



Pay with Telegram STARS
The book "Machine Learning with Python" is a comprehensive guide to machine learning using the Python programming language. The book covers the fundamental concepts of machine learning, including supervised and unsupervised learning, neural networks, and deep learning, and provides practical examples and exercises to help readers understand and apply these concepts. The book also discusses the importance of data preprocessing, feature selection, and model evaluation, and provides tips for improving the performance of machine learning models. The book begins by introducing the concept of machine learning and its applications in various fields, such as image and speech recognition, natural language processing, and predictive analytics. It then delves into the basics of machine learning, including linear regression, logistic regression, decision trees, random forests, support vector machines, and clustering algorithms. The book also covers more advanced topics such as neural networks, deep learning, and reinforcement learning. Throughout the book, the author emphasizes the importance of understanding the underlying principles of machine learning and how they can be applied to real-world problems. The book includes numerous examples and exercises to help readers practice and reinforce their understanding of the concepts covered. Additionally, the book provides tips and tricks for improving the performance of machine learning models and avoiding common pitfalls. One of the unique aspects of this book is its focus on the Python programming language, which is widely used in industry and academia for machine learning tasks. The book provides a detailed introduction to the Python ecosystem, including popular libraries such as NumPy, SciPy, and scikit-learn, and shows how to use these libraries to implement machine learning algorithms. The book concludes with a discussion on the future of machine learning and its potential impact on society.
Книга «Машинное обучение с Python» представляет собой исчерпывающее руководство по машинному обучению с использованием языка программирования Python. Книга охватывает фундаментальные концепции машинного обучения, включая обучение с учителем и без учителя, нейронные сети и глубокое обучение, и содержит практические примеры и упражнения, чтобы помочь читателям понять и применить эти концепции. В книге также обсуждается важность предварительной обработки данных, выбора признаков и оценки моделей, а также даются советы по повышению производительности моделей машинного обучения. Книга начинается с введения концепции машинного обучения и его приложений в различных областях, таких как распознавание изображений и речи, обработка естественного языка и предиктивная аналитика. Затем он углубляется в основы машинного обучения, включая линейную регрессию, логистическую регрессию, деревья решений, случайные леса, машины опорных векторов и алгоритмы кластеризации. Книга также охватывает более продвинутые темы, такие как нейронные сети, глубокое обучение и обучение с подкреплением. На протяжении всей книги автор подчеркивает важность понимания основополагающих принципов машинного обучения и того, как их можно применить к реальным проблемам. Книга включает в себя многочисленные примеры и упражнения, чтобы помочь читателям практиковаться и укреплять их понимание затронутых концепций. Кроме того, книга содержит советы и рекомендации по улучшению производительности моделей машинного обучения и избежанию распространенных подводных камней. Одним из уникальных аспектов этой книги является её ориентация на язык программирования Python, который широко используется в промышленности и научных кругах для задач машинного обучения. Книга содержит подробное введение в экосистему Python, включая популярные библиотеки, такие как NumPy, SciPy и scikit-learn, и показывает, как использовать эти библиотеки для реализации алгоритмов машинного обучения. Завершает книгу дискуссия о будущем машинного обучения и его потенциальном влиянии на общество.
''

You may also be interested in:

Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis
Programming With Python 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Hands-On Machine Learning with Scikit-Learn and Scientific Python Toolkits: A practical guide to implementing supervised and unsupervised machine learning algorithms in Python
Machine Learning Hero Master Data Science with Python Essentials Machine Learning with Python Hands-On Guide from Beginner to Expert (Mastering the AI Revolution Book 1)
Python Machine Learning Is The Complete Guide To Everything You Need To Know About Python Machine Learning Keras, Numpy, Scikit Learn, Tensorflow, With Useful Exercises and examples
Python Machine Learning A Hands-On Beginner|s Guide to Effectively Understand Artificial Neural Networks and Machine Learning Using Python
Python Machine Learning Understand Python Libraries (Keras, NumPy, Scikit-lear, TensorFlow) for Implementing Machine Learning Models in Order to Build Intelligent Systems
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning for Beginners: Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning: Leveraging Python for Implementing Machine Learning Algorithms and Applications (2023 Guide)
Machine Learning with Python Comprehensive Beginner’s Guide to Machine Learning in Python with Exercises and Case Studies
Python Machine Learning Discover the Essentials of Machine Learning, Data Analysis, Data Science, Data Mining and Artificial Intelligence Using Python Code with Python Tricks
Python Machine Learning Machine Learning and Deep Learning with Python, scikit-learn and Tensorflow
Python Machine Learning A Complete Guide for Beginners on Machine Learning and Deep Learning with Python
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Machine Learning With Python A Comprehensive Beginners Guide to Learn the Realms of Machine Learning with Python
Python Machine Learning: Everything You Should Know About Python Machine Learning Including Scikit Learn, Numpy, PyTorch, Keras And Tensorflow With Step-By-Step Examples And PRACTICAL Exercises
Machine Learning in Python Hands on Machine Learning with Python Tools, Concepts and Techniques
Machine Learning with Python Advanced and Effective Strategies Using Machine Learning with Python Theories
Machine Learning With Python Programming 2023 A Beginners Guide The Definitive Guide to Mastering Machine Learning in Python and a Problem-Guide Solver to Creating Real-World Intelligent Systems
Machine Learning With Python Programming 2023 A Beginners Guide The Definitive Guide to Mastering Machine Learning in Python and a Problem-Guide Solver to Creating Real-World Intelligent Systems
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Building Machine Learning Systems Using Python Practice to Train Predictive Models and Analyze Machine Learning Results
Online Machine Learning: A Practical Guide with Examples in Python (Machine Learning: Foundations, Methodologies, and Applications)
Python Programming, Deep Learning: 3 Books in 1: A Complete Guide for Beginners, Python Coding for AI, Neural Networks, and Machine Learning, Data Science Analysis … Learners (Python Programming
Machine Learning for Beginners Build and deploy Machine Learning systems using Python, 2nd Edition
Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Python: 3 books in 1 : Python basics for Beginners + Python Automation Techniques And Web Scraping + Python For Data Science And Machine Learning
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning
Pragmatic Machine Learning with Python Learn How to Deploy Machine Learning Models in Production
Machine Learning with Python The Ultimate Guide to Learn Machine Learning Algorithms. Includes a Useful Section about Analysis, Data Mining and Artificial Intelligence in Business Applications
Statistics for Machine Learning Implement Statistical methods used in Machine Learning using Python
Learn Autonomous Programming with Python Utilize Python|s capabilities in Artificial Intelligence, Machine Learning, Deep Learning and robotic process automation
Python Programming The Crash Course for Python – Learn the Secrets of Machine Learning, Data Science Analysis and Artificial Intelligence. Introduction to Deep Learning for Beginners