
BOOKS - Applied Data Science Using Pyspark Learn the End-to-end Predictive Model-buil...

Applied Data Science Using Pyspark Learn the End-to-end Predictive Model-building Cycle, 2nd Edition
Author: Ramcharan Kakarla, Sundar Krishnan, Balaji Dhamodharan, Venkata Gunnu
Year: 2024
Pages: 447
Format: PDF
File size: 18.0 MB
Language: ENG

Year: 2024
Pages: 447
Format: PDF
File size: 18.0 MB
Language: ENG

Book Description: Applied Data Science Using PySpark Learn the End-to-End Predictive Model Building Cycle, Second Edition, is a comprehensive guide to data science using Python and Spark. This book covers the entire predictive modeling cycle from data preparation to deployment, providing readers with the skills they need to become proficient data scientists. The second edition has been updated to include new features and improvements in PySpark, making it an essential resource for anyone looking to master data science with Python. The book begins by introducing the concept of the end-to-end predictive model building cycle, which is a systematic approach to creating predictive models that can be applied to any problem. It then delves into the details of data preparation, feature engineering, model selection, training, validation, and deployment, providing readers with a solid foundation in data science principles. Throughout the book, the author uses real-world examples to illustrate each step of the process, making it easy for readers to understand how to apply these concepts in their own work. Additionally, the book includes practical exercises and projects to help readers reinforce their understanding of the material. One of the key themes of the book is the importance of understanding the technology evolution process and its impact on society. The author emphasizes the need for individuals to develop a personal paradigm for perceiving the technological process of developing modern knowledge as the basis for survival in a rapidly changing world.
Applied Data Science Using PySpark arn the End-to-End Predictive Model Building Cycle, Second Edition - всеобъемлющее руководство по науке о данных с использованием Python и Spark. Эта книга охватывает весь цикл прогностического моделирования от подготовки данных до развертывания, предоставляя читателям навыки, необходимые для того, чтобы стать опытными специалистами по данным. Второе издание было обновлено, чтобы включить новые функции и улучшения в PySpark, что делает его важным ресурсом для всех, кто хочет освоить науку о данных с помощью Python. Книга начинается с введения концепции цикла построения сквозной прогностической модели, которая представляет собой системный подход к созданию прогностических моделей, которые могут быть применены к любой проблеме. Затем он углубляется в детали подготовки данных, разработки функций, выбора модели, обучения, проверки и развертывания, предоставляя читателям прочную основу в принципах науки о данных. На протяжении всей книги автор использует реальные примеры для иллюстрации каждого шага процесса, что позволяет читателям легко понять, как применять эти концепции в своей собственной работе. Кроме того, книга включает практические упражнения и проекты, которые помогут читателям лучше понять материал. Одна из ключевых тем книги - важность понимания процесса эволюции технологий и его влияния на общество. Автор подчеркивает необходимость развития индивидуумами личностной парадигмы восприятия технологического процесса развития современных знаний как основы выживания в быстро меняющемся мире.
Application Data Science Using PySpark arn the End-to-End Predictive Model Building Cycle, Seconde Édition - un guide complet de la science des données utilisant Python et Spark. Ce livre couvre l'ensemble du cycle de modélisation prédictive, de la préparation des données au déploiement, en fournissant aux lecteurs les compétences nécessaires pour devenir des professionnels des données expérimentés. La deuxième édition a été mise à jour pour inclure de nouvelles fonctionnalités et améliorations dans PySpark, ce qui en fait une ressource importante pour tous ceux qui veulent apprendre la science des données avec Python. livre commence par l'introduction du concept de cycle de construction d'un modèle prédictif de bout en bout, qui est une approche systémique de la création de modèles prédictifs qui peuvent être appliqués à n'importe quel problème. Il est ensuite approfondi dans les détails de la préparation des données, le développement des fonctions, le choix du modèle, la formation, la vérification et le déploiement, offrant aux lecteurs une base solide dans les principes de la science des données. Tout au long du livre, l'auteur utilise des exemples réels pour illustrer chaque étape du processus, ce qui permet aux lecteurs de comprendre facilement comment appliquer ces concepts dans leur propre travail. En outre, le livre comprend des exercices pratiques et des projets qui aideront les lecteurs à mieux comprendre le matériel. L'un des principaux thèmes du livre est l'importance de comprendre l'évolution de la technologie et son impact sur la société. L'auteur souligne la nécessité pour les individus de développer un paradigme personnel de la perception du processus technologique du développement des connaissances modernes comme base de la survie dans un monde en mutation rapide.
Applied Data Science Using PySpark arn the End-to-End Predictive Model Building Cycle, Second Edition - una guía completa de la ciencia de datos usando Python y Spark. Este libro cubre todo el ciclo de simulación predictiva desde la preparación de datos hasta la implementación, proporcionando a los lectores las habilidades necesarias para convertirse en profesionales de datos experimentados. La segunda edición se ha actualizado para incorporar nuevas características y mejoras en PySpark, lo que lo convierte en un recurso importante para cualquiera que quiera dominar la ciencia de datos con Python. libro comienza con la introducción del concepto de ciclo de construcción de un modelo predictivo transversal, que representa un enfoque sistémico para la creación de modelos predictivos que pueden aplicarse a cualquier problema. A continuación, profundiza en los detalles de la preparación de datos, el desarrollo de funciones, la selección de modelos, el aprendizaje, la validación y la implementación, proporcionando a los lectores una base sólida en los principios de la ciencia de datos. A lo largo del libro, el autor utiliza ejemplos reales para ilustrar cada paso del proceso, lo que permite a los lectores entender fácilmente cómo aplicar estos conceptos en su propio trabajo. Además, el libro incluye ejercicios prácticos y proyectos que ayudarán a los lectores a comprender mejor el material. Uno de los temas clave del libro es la importancia de entender el proceso de evolución de la tecnología y su impacto en la sociedad. autor subraya la necesidad de que los individuos desarrollen un paradigma personal para percibir el proceso tecnológico del desarrollo del conocimiento moderno como base para la supervivencia en un mundo que cambia rápidamente.
Applied Data Science Using PySpark arn the End-to-End Predictive Model Building Ciclo, SecondEdition è una guida completa alla scienza dei dati con Python e Spark. Questo libro comprende l'intero ciclo di simulazione predittiva, dalla preparazione ai dati all'implementazione, fornendo ai lettori le competenze necessarie per diventare esperti di dati. La seconda edizione è stata aggiornata per includere nuove funzioni e miglioramenti nel PySpark, rendendolo una risorsa importante per tutti coloro che vogliono imparare la scienza dei dati con Python. Il libro inizia introducendo il concetto di ciclo di creazione di un modello predittivo trasversale, che è un approccio di sistema alla creazione di modelli predittivi che possono essere applicati a qualsiasi problema. Viene quindi approfondito nei dettagli relativi alla preparazione dei dati, allo sviluppo delle funzioni, alla scelta del modello, alla formazione, alla convalida e all'implementazione, fornendo ai lettori una base solida per la scienza dei dati. Durante tutto il libro, l'autore utilizza esempi reali per illustrare ogni passo del processo, permettendo ai lettori di capire facilmente come applicare questi concetti nel proprio lavoro. Inoltre, il libro include esercizi pratici e progetti che aiuteranno i lettori a comprendere meglio il materiale. Uno dei temi chiave del libro è l'importanza di comprendere l'evoluzione della tecnologia e il suo impatto sulla società. L'autore sottolinea la necessità per gli individui di sviluppare il paradigma personale della percezione del processo tecnologico dello sviluppo delle conoscenze moderne come base di sopravvivenza in un mondo in rapida evoluzione.
Applied Data Science Using PySpark arn the End-to-End Predictive Model Building Cycle, Second Edition ist ein umfassender itfaden zur Datenwissenschaft mit Python und Spark. Dieses Buch deckt den gesamten Zyklus der prädiktiven Modellierung von der Datenaufbereitung bis zur Bereitstellung ab und vermittelt den sern die Fähigkeiten, die sie benötigen, um erfahrene Datenspezialisten zu werden. Die zweite Ausgabe wurde aktualisiert, um neue Funktionen und Verbesserungen in PySpark aufzunehmen, was es zu einer wichtigen Ressource für alle macht, die die Datenwissenschaft mit Python beherrschen möchten. Das Buch beginnt mit einer Einführung in das Konzept eines Zyklus zur Erstellung eines End-to-End-Vorhersagemodells, das einen systematischen Ansatz zur Erstellung von Vorhersagemodellen darstellt, die auf jedes Problem angewendet werden können. Es geht dann tiefer in die Details der Datenaufbereitung, Funktionsentwicklung, Modellauswahl, Schulung, Validierung und Bereitstellung und bietet den sern eine solide Grundlage in den Prinzipien der Datenwissenschaft. Während des gesamten Buches verwendet der Autor reale Beispiele, um jeden Schritt des Prozesses zu veranschaulichen, so dass die ser leicht verstehen können, wie sie diese Konzepte in ihrer eigenen Arbeit anwenden können. Darüber hinaus enthält das Buch praktische Übungen und Projekte, die den sern helfen, das Material besser zu verstehen. Eines der Hauptthemen des Buches ist die Bedeutung des Verständnisses des technologischen Evolutionsprozesses und seiner Auswirkungen auf die Gesellschaft. Der Autor betont die Notwendigkeit, dass Individuen ein persönliches Paradigma für die Wahrnehmung des technologischen Prozesses der Entwicklung modernen Wissens als Grundlage für das Überleben in einer sich schnell verändernden Welt entwickeln.
''
應用數據科學使用PySpark學習末端預測模型構建循環,第二版是使用Python和Spark的數據科學的綜合指南。本書涵蓋了從數據準備到部署的整個預測建模周期,為讀者提供成為經驗豐富的數據專業人員所需的技能。第二版已更新,以包括PySpark的新功能和改進,使其成為希望使用Python掌握數據科學的任何人的重要資源。本書首先介紹了構造端到端預測模型的循環概念,該模型是一種系統方法來創建可以應用於任何問題的預測模型。然後,它深入研究數據準備,功能開發,模型選擇,學習,驗證和部署的細節,為讀者提供了數據科學原理的堅實基礎。在整個書中,作者使用真實的示例來說明過程的每個步驟,從而使讀者可以輕松地了解如何在自己的作品中應用這些概念。此外,該書還包括實際練習和項目,以幫助讀者更好地了解材料。本書的主要主題之一是了解技術演變過程及其對社會的影響的重要性。作者強調個人需要發展個人範式,將現代知識的技術發展過程視為快速變化的世界生存的基礎。
