BOOKS - Python Debugging for AI, Machine Learning, and Cloud Computing: A Pattern-Ori...
Python Debugging for AI, Machine Learning, and Cloud Computing: A Pattern-Oriented Approach - Dmitry Vostokov December 30, 2023 PDF  BOOKS
ECO~21 kg CO²

3 TON

Views
33825

Telegram
 
Python Debugging for AI, Machine Learning, and Cloud Computing: A Pattern-Oriented Approach
Author: Dmitry Vostokov
Year: December 30, 2023
Format: PDF
File size: PDF 7.1 MB
Language: English



Pay with Telegram STARS
Why Should You Read This Book? The world is changing rapidly and technology is evolving faster than ever before. With the rise of AI and cloud computing, software development has become more complex and challenging. As a result, debugging has become an essential skill for all software developers, AI ML engineers, and DevOps professionals. This book provides a comprehensive guide to Python debugging, which is crucial for developing robust and reliable AI machine learning and cloud computing software. It offers a novel pattern-oriented approach to diagnosing and debugging abnormal software structure and behavior, enabling you to understand the underlying causes of software failures and develop effective solutions. What's Inside? Part I: Introduction to Pattern-Oriented Debugging 1. Introduction to Pattern-Oriented Debugging 2. Debugging Process: Understanding the Basics 3. Debugging Techniques: Essentials for Success Part II: Python Debugging Fundamentals 4. Basic Debugging Concepts 5. Debugging Strategies: Essentials for Success 6. Case Studies in Python Debugging Part III: Cloud Native and Machine Learning Environments 7. Debugging in Cloud Native Environments 8. Debugging in Machine Learning Environments 9.
Зачем читать эту книгу? Мир быстро меняется, и технологии развиваются быстрее, чем когда-либо прежде. С ростом искусственного интеллекта и облачных вычислений разработка программного обеспечения стала более сложной и сложной. В результате отладка стала необходимым навыком для всех разработчиков программного обеспечения, инженеров AI ML и профессионалов DevOps. Эта книга содержит исчерпывающее руководство по отладке Python, которое имеет решающее значение для разработки надежного и надежного программного обеспечения для машинного обучения и облачных вычислений. Он предлагает новый ориентированный на шаблоны подход к диагностике и отладке ненормальной структуры и поведения программного обеспечения, позволяя понять основные причины сбоев программного обеспечения и разработать эффективные решения. Что внутри? Часть I: Введение в отладку, ориентированную на шаблоны 1. Введение в отладку, ориентированную на шаблоны 2. Процесс отладки: Основные сведения 3. Debugging Techniques: Essentials for Success Part II: Python Debugging Fundamentals 4. Основные принципы отладки 5. Стратегии отладки: основы успеха 6. Истории успеха в отладке Python Часть III: Облачные нативные среды и среды машинного обучения 7. Отладка в облачных средах 8. Отладка в средах машинного обучения 9.
Pourquoi lire ce livre ? monde change rapidement et la technologie évolue plus vite que jamais. Avec la croissance de l'intelligence artificielle et du cloud computing, le développement de logiciels est devenu plus complexe et plus complexe. En conséquence, le débogage est devenu une compétence nécessaire pour tous les développeurs de logiciels, les ingénieurs AI ML et les professionnels DevOps. Ce livre contient un guide complet sur le débogage de Python, qui est crucial pour le développement de logiciels robustes et fiables pour l'apprentissage automatique et le cloud computing. Il propose une nouvelle approche axée sur les modèles pour diagnostiquer et déboguer la structure anormale et le comportement du logiciel, vous permettant de comprendre les causes sous-jacentes des défaillances du logiciel et de développer des solutions efficaces. Qu'y a-t-il à l'intérieur ? Partie I : Introduction au débogage centré sur les motifs 1. Introduction au débogage centré sur les modèles 2. Processus de débogage : Informations de base 3. Debugging Techniques: Essentials for Success Part II: Python Debugging Fundamentals 4. Principes de base du débogage 5. Stratégies de débogage : bases du succès 6. Exemples de réussite dans le débogage Python Partie III : Environnements natifs cloud et apprentissage automatique 7. Débogage dans les environnements cloud 8. Débogage dans les environnements d'apprentissage automatique 9.
Por qué leer este libro? mundo está cambiando rápidamente y la tecnología está evolucionando más rápido que nunca. Con el crecimiento de la inteligencia artificial y la computación en la nube, el desarrollo de software se ha vuelto más complejo y complejo. Como resultado, la depuración se ha convertido en una habilidad necesaria para todos los desarrolladores de software, ingenieros de AI ML y profesionales de DevOps. Este libro contiene una guía exhaustiva de depuración de Python que es crucial para desarrollar software confiable y confiable para el aprendizaje automático y la computación en la nube. Ofrece un nuevo enfoque basado en plantillas para diagnosticar y depurar la estructura y el comportamiento anormales del software, lo que permite comprender las causas subyacentes de las fallas del software y desarrollar soluciones eficaces. Qué hay dentro? Parte I: Introducción a la depuración centrada en los patrones 1. Introducción a la depuración centrada en los patrones 2. Proceso de depuración: Información básica 3. Debugging Techniques: Essentials for Success Part II: Python Debugging Fundamentals 4. Principios básicos de depuración 5. Estrategias de depuración: fundamentos del éxito 6. Casos de éxito en la depuración de Python Parte III: Entornos nativos en la nube y entornos de aprendizaje automático 7. Depuración en la nube 8. Depuración en entornos de aprendizaje automático 9.
Por que ler este livro? O mundo está a mudar rapidamente e a tecnologia está a evoluir mais rápido do que nunca. Com o crescimento da inteligência artificial e computação em nuvem, o desenvolvimento de software tornou-se mais complexo e complexo. Como resultado, a depuração tornou-se uma habilidade necessária para todos os desenvolvedores de software, engenheiros de AI ML e profissionais de DevOps. Este livro contém um guia de depuração exaustivo de Python, crucial para o desenvolvimento de softwares confiáveis e confiáveis para o aprendizado de máquinas e computação em nuvem. Ele oferece uma nova abordagem focada em modelos para diagnosticar e depurar a estrutura e o comportamento anormais do software, permitindo compreender as principais causas de falhas de software e desenvolver soluções eficazes. O que está lá dentro? Parte I: Introdução à depuração baseada em modelos 1. Introdução à depuração focada em modelos 2. Processo de depuração: Informações básicas 3. Debugging Techniques: Essentials for Success Part II: Python Debugging Fundamentals 4. Princípios básicos de depuração 5. Estratégias de depuração: fundamentos do sucesso 6. Histórias de sucesso na depuração Python Parte III: Ambientes nativos na nuvem e ambientes de aprendizado de máquina 7. Depuração em ambientes de nuvem 8. Depuração em ambientes de aprendizado de máquina 9.
Perché leggere questo libro? Il mondo sta cambiando rapidamente e la tecnologia sta evolvendo più velocemente che mai. Con l'aumento dell'intelligenza artificiale e del cloud computing, lo sviluppo del software è diventato più complesso e complesso. Di conseguenza, il debug è diventato una competenza necessaria per tutti gli sviluppatori di software, ingegneri AI ML e professionisti del settore. Questo libro contiene una guida completa al debug di Python, fondamentale per sviluppare software affidabili e affidabili per l'apprendimento automatico e il cloud computing. Offre un nuovo approccio orientato ai modelli per la diagnosi e il debug di strutture e comportamenti software anormali, in modo da comprendere le cause principali dei guasti software e sviluppare soluzioni efficaci. Cosa c'è dentro? Parte I: Introduzione al debug incentrata sui modelli 1. Introduzione al debug incentrata sui modelli 2. Processo di debug: Informazioni di base 3. Debugging Techniques: Essentials for Success Part II: Python Debugging Fundamentals 4. Principi di base per il debug 5. Strategie di debug: basi di successo 6. Storie di successo nel debug Python Parte III: Ambienti nativi cloud e di apprendimento automatico 7. Debug in ambienti cloud 8. Debug in ambienti di apprendimento automatico 9.
Warum dieses Buch lesen? Die Welt verändert sich schnell und die Technologie entwickelt sich schneller als je zuvor. Mit dem Aufkommen von künstlicher Intelligenz und Cloud Computing ist die Softwareentwicklung komplexer und komplexer geworden. Infolgedessen ist Debugging zu einer notwendigen Fähigkeit für alle Softwareentwickler, AI ML-Ingenieure und DevOps-Profis geworden. Dieses Buch enthält einen umfassenden itfaden zum Python-Debugging, der für die Entwicklung zuverlässiger und zuverlässiger Software für maschinelles rnen und Cloud Computing von entscheidender Bedeutung ist. Es bietet einen neuen musterorientierten Ansatz für die Diagnose und das Debuggen von abnormaler Softwarestruktur und -verhalten, der es ermöglicht, die Hauptursachen für Softwarefehler zu verstehen und effektive Lösungen zu entwickeln. Was ist drin? Teil I: Einführung in das Template-orientierte Debugging 1. Einführung in das Template-orientierte Debugging 2. Debugging-Prozess: Grundlegende Informationen 3. Debugging Techniques: Essentials for Success Part II: Python Debugging Fundamentals 4. Grundlagen des Debugging5. Debugging-Strategien: Grundlagen des Erfolgs 6. Erfolgsgeschichten im Python Debugging Teil III: Cloud Native und Machine arning Umgebungen 7. Debugging in Cloud-Umgebungen 8. Debugging in Machine-arning-Umgebungen 9.
Dlaczego przeczytać tę książkę? Świat szybko się zmienia, a technologia rozwija się szybciej niż kiedykolwiek wcześniej. Wraz ze wzrostem sztucznej inteligencji i chmury obliczeniowej rozwój oprogramowania stał się bardziej złożony i złożony. W rezultacie debugowanie stało się niezbędną umiejętnością dla wszystkich programistów, inżynierów AI ML i profesjonalistów DevOps. Ta książka zapewnia kompleksowy przewodnik po debugowaniu Pythona, który ma kluczowe znaczenie dla rozwoju solidnego i niezawodnego oprogramowania do uczenia się maszyn i chmury obliczeniowej. Oferuje nowe podejście zorientowane na szablon do diagnozowania i debugowania nieprawidłowej struktury i zachowania oprogramowania, co pozwala zrozumieć główne przyczyny awarii oprogramowania i opracować skuteczne rozwiązania. Co jest w środku? Część I: Wprowadzenie do debugowania zorientowanego na szablon 1. Wprowadzenie do debugowania zorientowanego na szablon 2. Proces debugowania: Podstawowe informacje 3. Techniki debugowania: Istoty sukcesu Część II: Python Debugging Fundamentals 4. Podstawy debugowania 5. Strategie debugowania: fundamenty sukcesu 6. Python Debugging Case Studies Part III: Cloud Native and Machine arning Environments 7. Cloud Debugging 8. Debugowanie w środowiskach uczenia maszynowego 9.
''
Bu kitabı neden okumalısınız? Dünya hızla değişiyor ve teknoloji her zamankinden daha hızlı ilerliyor. Yapay zeka ve bulut bilişimin yükselişiyle, yazılım geliştirme daha karmaşık ve karmaşık hale geldi. Sonuç olarak, hata ayıklama tüm yazılım geliştiricileri, AI ML mühendisleri ve DevOps uzmanları için gerekli bir beceri haline gelmiştir. Bu kitap, sağlam ve güvenilir makine öğrenimi ve bulut bilişim yazılımı geliştirmek için kritik olan Python hata ayıklama için kapsamlı bir rehber sunmaktadır. Anormal yazılım yapısını ve davranışını teşhis etmek ve hata ayıklamak için yeni bir şablon odaklı yaklaşım sunar, yazılım hatalarının temel nedenlerini anlamanıza ve etkili çözümler geliştirmenize olanak tanır. İçinde ne var? Bölüm I: Şablon odaklı hata ayıklamaya giriş 1. Şablon tabanlı hata ayıklamaya giriş 2. Hata ayıklama işlemi: Temel bilgiler 3. Hata Ayıklama Teknikleri: Başarının Temelleri Bölüm II: Python Hata Ayıklama Temelleri 4. Hata ayıklama temelleri 5. Hata Ayıklama Stratejileri: Başarının Temelleri 6. Python Hata Ayıklama Vaka Çalışmaları Bölüm III: Cloud Native ve Machine arning Ortamları 7. Bulut Hata Ayıklama 8. Makine öğrenimi ortamlarında hata ayıklama 9.
لماذا قرأت هذا الكتاب ؟ العالم يتغير بسرعة والتكنولوجيا تتقدم بشكل أسرع من أي وقت مضى. مع ظهور الذكاء الاصطناعي والحوسبة السحابية، أصبح تطوير البرمجيات أكثر تعقيدًا وتعقيدًا. نتيجة لذلك، أصبح التصحيح مهارة ضرورية لجميع مطوري البرامج ومهندسي AI ML ومحترفي DevOps. يقدم هذا الكتاب دليلًا شاملاً لتصحيح تصحيح Python وهو أمر بالغ الأهمية لتطوير برامج قوية وموثوقة للتعلم الآلي والحوسبة السحابية. إنه يقدم نهجًا جديدًا موجهًا نحو النموذج لتشخيص وتصحيح بنية وسلوك البرامج غير الطبيعي، مما يسمح لك بفهم الأسباب الجذرية لفشل البرامج وتطوير حلول فعالة. ماذا بالداخل ؟ الجزء الأول: مقدمة للتصحيح الموجه نحو النموذج 1. مقدمة إلى التصحيح الموجه نحو النموذج 2. عملية التصحيح: المعلومات الأساسية 3. Debugging Techniques: Essentials for Success Part II: Python Debugging Producentals 4. تصحيح الأساسيات 5. Debugging Strategies: Foundations of Success 6. Python Debugging Case Studies Part III: Cloud Native and Machine arning Environments 7. تصحيح السحابة 8. التصحيح في بيئات التعلم الآلي 9.
為什麼要讀這本書?世界正在迅速變化,技術的發展速度比以往任何時候都快。隨著人工智能和雲計算的興起,軟件開發變得更加復雜和復雜。結果,調試成為所有軟件開發人員,AI ML工程師和DevOps專業人員的必要技能。本書提供了有關Python調試的詳盡指南,對於開發用於機器學習和雲計算的可靠可靠的軟件至關重要。它提供了一種基於模板的新方法來診斷和調試異常的軟件結構和行為,從而可以了解軟件故障的主要原因並開發有效的解決方案。裏面有什麼?第一部分:針對模板1的調試介紹。針對模板2的調試簡介。調試過程:基本信息3.Debugging Techniques: Essentials for Success Part II: Python Debugging Fundamentals 4.調試的基本原理5。調試策略:成功的基礎。Python調試成功案例第三部分:雲原生環境和機器學習環境7.雲調試8。機器學習環境中的調試9.

You may also be interested in:

AI Powered Financial Analysis Harnessing Artificial Intelligence for Financial Analysis and Market Insights with Python
AI Powered Financial Analysis Harnessing Artificial Intelligence for Financial Analysis and Market Insights with Python
Building Websites with Django Build and Deploy Professional Websites with Python Programming and the Django Framework
Graph Data Modeling in Python: A practical guide to curating, analyzing, and modeling data with graphs
Jesus and Brian: Exploring the Historical Jesus and his Times via Monty Python|s Life of Brian
The Power of Python (Power of Coding)
Study Less, Study Smart: A guide to effective study techniques and enhanced learning
Whittling Technique Guide Learning Whittling Through These Simple Patterns Whittling Ideas
Pandas in 7 Days: Utilize Python to Manipulate Data, Conduct Scientific Computing, Time Series Analysis, and Exploratory Data Analysis (English Edition)
OpenAI GPT For Python Developers: The art and science of developing intelligent apps with OpenAI GPT-3, DALL.E 2, CLIP, and Whisper - Suitable for learners of all levels
Collaborative Teams That Transform Schools: The Next Step in PLCs (Improving Student Learning in PLCs; Effective Leaders and Team Collaboration That Bolster PLCs)
Python Programming A Step By Step Guide From Beginner to Advanced (Beginner & Advance)
Python GUI Programming with Tkinter: Develop Responsive and Powerful GUI Applications with Tkinter
Build Your Own Ethereum Mining Raspberry Pi Full Node [Python Client] Mining on Raspberry Pi
Time Series Indexing: Implement iSAX in Python to index time series with confidence
Image Processing Masterclass with Python : 50+ Solutions and Techniques Solving Complex Digital Image Processing Challenges Using Numpy, Scipy, Pytorch and Keras (English Edition)
The Mental Math Magician: Underground Secrets and Tricks to Amazing Lightning Speed Math and Becoming a Real Life Human Calculator (Accelerated Learning and Memory Strategies Guide for Students)
Wraparound Guide: How to Gather Student Voice, Build Community (A wraparound service delivery handbook for helping students overcome barriers to wellness and learning)Partnerships, and Cultivate Hope
Computer Programming for Beginners 4 Books in 1 LINUX COMMAND-LINE + PYTHON Programming + NETWORKING + HACKING with KALI LINUX. Cybersecurity, Wireless, LTE, Networks, and Penetration Testing
Learning Angular A Hands-On Guide to Angular 2 and Angular 4, 2nd Edition
Causal Inference in Python Applying Causal Inference in the Tech Industry (Final)
Creating Video Games Using PyGame: A comprehensive guide to creating your own games in python
Causal Inference in Python Applying Causal Inference in the Tech Industry (Final)
Linux for Beginners A Practical and Comprehensive Guide to Learn Linux Operating System and Master Linux Command Line. Contains Self-Evaluation Tests to Verify Your Learning Level
Latin Learning And English Lore: Studies in Anglo-Saxon Literature for Michael Lapidge (Toronto Old English Studies)
Engaging Dissonance: Developing Mindful Global Citizenship in Higher Education (Innovations in Higher Education Teaching and Learning, 9)
Second Language Teacher Professional Development: Technological Innovations for Post-Emergency Teacher Education (Digital Education and Learning)
Negotiating Learning and Identity in Higher Education: Access, Persistence and Retention (Understanding Student Experiences of Higher Education)
Cognitive Linguistics and Japanese Pedagogy: A Usage-Based Approach to Language Learning and Instruction (Applications of Cognitive Linguistics [ACL], 35)
Solutions Architect|s Handbook: Kick-start your solutions architect career by learning architecture design principles and strategies
Instant Revit!: A Quick and Easy Guide to Learning Autodesk?de?ed??ede??d???de?ed???de??d??? Revit?de?ed??ede??d???de?ed???de??d??? 2016 by David Martin (2015-05-06)
Colorways Acrylic Animals Tips, techniques, and step-by-step lessons for learning to paint whimsical artwork in vibrant acrylic
Colorways Watercolor Flowers Tips, techniques, and step-by-step lessons for learning to paint whimsical artwork in vibrant watercolor
GMAT Prep 2024 2025 For Dummies with Online Practice (GMAT Focus Edition) (For Dummies: Learning Made Easy)
Learning from the Children: Childhood, Culture and Identity in a Changing World (New Directions in Anthropology) (New Directions in Anthropology; 35) by Jacqueline Waldren (2012-06-01)
Hands-On Modern App Development C# 8 .Net Core 3: Developing cross-platform mobile apps with Xamarin.Forms, desktop applications using WPF,building web … Razor page (Python Trailblazer|s Bible)
Intercultural Learning in Language Education and Beyond: Evolving Concepts, Perspectives and Practices (Languages for Intercultural Communication and Education, 38)
Connecting Learning Across the Institution: New Directions for Higher Education, Number 165 (J-B HE Single Issue Higher Education)
Advancing and Consolidating Mathematical Modelling: Research from ICME-14 (International Perspectives on the Teaching and Learning of Mathematical Modelling)
Teens Talk About Learning Disabilities and Differences (Teen Voices: Real Teens Discuss Real Problems)