BOOKS - Evolutionary Deep Learning: Genetic algorithms and neural networks
Evolutionary Deep Learning: Genetic algorithms and neural networks - Micheal Lanham August 8, 2023 PDF  BOOKS
ECO~17 kg CO²

2 TON

Views
38699

Telegram
 
Evolutionary Deep Learning: Genetic algorithms and neural networks
Author: Micheal Lanham
Year: August 8, 2023
Format: PDF
File size: PDF 13 MB
Language: English



Pay with Telegram STARS
Book Description: 'Evolutionary Deep Learning, Genetic Algorithms, and Neural Networks' is a book that explores the intersection of deep learning and evolutionary computation, providing readers with a comprehensive understanding of how these two fields can be combined to create more powerful and adaptable AI systems. The book is divided into four parts, each focusing on a different aspect of evolutionary deep learning: getting started, optimizing deep learning, advanced applications, and reinforcement learning. Part one provides an introduction to evolutionary deep learning, covering topics such as the principles of evolutionary computation, genetic algorithms, and the DEEP (Differential Evolution, Evolutionary Programming, and Particle Swarm Optimization) framework. This section also includes practical examples of how to use evolutionary computation to optimize deep learning models.
'Evolutionary Deep arning, Genetic Algorithms, and Neural Networks'- книга, которая исследует пересечение глубокого обучения и эволюционных вычислений, предоставляя читателям исчерпывающее понимание того, как эти два поля могут быть объединены для создания более мощных и адаптируемых систем ИИ. Книга состоит из четырех частей, каждая из которых посвящена различным аспектам эволюционного глубокого обучения: началу работы, оптимизации глубокого обучения, расширенным приложениям и обучению с подкреплением. В первой части представлено введение в эволюционное глубокое обучение, охватывающее такие темы, как принципы эволюционных вычислений, генетические алгоритмы и фреймворк DEEP (Differential Evolution, Evolutionary Programming, and Particle Swarm Optimization). Этот раздел также включает практические примеры того, как использовать эволюционные вычисления для оптимизации моделей глубокого обучения.
« Evolutionary Deep arning, Genetic Algorithms, and Neural Networks » est un livre qui explore l'intersection entre l'apprentissage profond et le calcul évolutionnaire, offrant aux lecteurs une compréhension exhaustive de la façon dont ces deux champs peuvent être combinés pour créer des systèmes d'IA plus puissants et adaptables. livre se compose de quatre parties, chacune traitant de différents aspects de l'apprentissage profond évolutionnaire : démarrage, optimisation de l'apprentissage profond, applications avancées et apprentissage renforcé. La première partie présente une introduction à l'apprentissage profond évolutionnaire, couvrant des sujets tels que les principes de calcul évolutionnaire, les algorithmes génétiques et le cadre DEEP (Differential Evolution, Evolutionary Programming, and Particle Swarm Optimization). Cette section contient également des exemples pratiques de la façon d'utiliser le calcul évolutif pour optimiser les modèles d'apprentissage profond.
'Evolutionary Deep arning, Genetic Algorithms, and Neural Networks'es un libro que explora la intersección entre el aprendizaje profundo y la computación evolutiva, proporcionando a los lectores una comprensión exhaustiva de cómo se pueden combinar estos dos campos para crear uno más potente y adaptable sistemas de IA. libro consta de cuatro partes, cada una dedicada a diferentes aspectos del aprendizaje profundo evolutivo: inicio del trabajo, optimización del aprendizaje profundo, aplicaciones avanzadas y aprendizaje con refuerzos. En la primera parte se presenta una introducción al aprendizaje profundo evolutivo que abarca temas como los principios de la computación evolutiva, los algoritmos genéticos y el framework DEEP (Evolución Diferencial, Programación Evolutiva, y Optimización de Swarm Parcial). Esta sección también incluye ejemplos prácticos de cómo utilizar la computación evolutiva para optimizar los modelos de aprendizaje profundo.
'Evolutionary Deep arning, Genetic Algorithms, and Neural Networks'é um livro que explora a interseção entre o aprendizado profundo e a computação evolutiva, oferecendo aos leitores uma compreensão abrangente de como os dois campos podem ser combinados para criar sistemas de IA mais potentes e adaptáveis. O livro é composto por quatro partes, cada uma sobre diferentes aspectos do aprendizado profundo evolucionário: o início do trabalho, a otimização do aprendizado profundo, aplicações avançadas e treinamento com reforços. A primeira parte apresenta uma introdução ao aprendizado evolucionário profundo, que abrange temas como os princípios da computação evolucionária, algoritmos genéticos e o quadro DEEP (Determinal Evolution, Evolutionary Programing, and Particle Swarm Optimization). Esta seção também inclui exemplos práticos de como usar computação evolutiva para otimizar modelos de aprendizagem profunda.
Evolutionary Deep arning, Genetic Algorithms, and Neurale Networks è un libro che esamina l'intersezione tra apprendimento profondo e elaborazione evolutiva, fornendo ai lettori una comprensione completa di come i due campi possano essere combinati per creare sistemi di IA più potenti e adattabili. Il libro è composto da quattro parti, ognuna dedicata a diversi aspetti dell'apprendimento approfondito evolutivo: avvio, ottimizzazione dell'apprendimento approfondito, applicazioni avanzate e formazione con rinforzi. La prima parte presenta un'introduzione all'apprendimento profondo evolutivo che comprende temi quali i principi del calcolo evolutivo, gli algoritmi genetici e il framework DEEP (Differential Evolution, Evolutionary Programing, and Particle Swarm Ottimization). Questa sezione include anche esempi pratici di come utilizzare i calcoli evolutivi per ottimizzare i modelli di apprendimento approfondito.
„Evolutionary Deep arning, Genetic Algorithms, and Neural Networks“ ist ein Buch, das die Schnittstelle von Deep arning und evolutionärem Computing untersucht und den sern einen umfassenden Einblick gibt, wie diese beiden Felder kombiniert werden können, um leistungsfähigere und anpassungsfähigere KI-Systeme zu schaffen. Das Buch besteht aus vier Teilen, die sich jeweils auf verschiedene Aspekte des evolutionären Deep arning konzentrieren: Einstieg, Deep arning-Optimierung, erweiterte Anwendungen und verstärktes rnen. Der erste Teil bietet eine Einführung in das evolutionäre Deep arning und deckt Themen wie evolutionäre Rechenprinzipien, genetische Algorithmen und das DEEP-Framework (Differential Evolution, Evolutionary Programming, and Particle Swarm Optimization) ab. Dieser Abschnitt enthält auch praktische Beispiele für die Verwendung von evolutionären Berechnungen zur Optimierung von Deep-arning-Modellen.
„Evolutionary Deep arning, Genetic Algorithms, and Neural Networks” to książka, która bada skrzyżowanie głębokiego uczenia się i ewolucyjnego przetwarzania danych, zapewniając czytelnikom kompleksowe zrozumienie, w jaki sposób te dwie dziedziny mogą być połączone w celu stworzenia silniejszych i adaptowalnych systemów AI. Książka składa się z czterech części, z których każda skupia się na różnych aspektach ewolucyjnego głębokiego uczenia się: rozpoczynaniu, optymalizacji głębokiego uczenia się, zaawansowanych zastosowaniach i uczeniu się wzmacniającym. Pierwsza część stanowi wprowadzenie do ewolucyjnego głębokiego uczenia się, obejmującego tematy takie jak zasady obliczeń ewolucyjnych, algorytmy genetyczne i ramy DEEP (ewolucja różnicowa, programowanie ewolucyjne i optymalizacja roju cząstek). Sekcja ta zawiera również praktyczne przykłady wykorzystania komputerów ewolucyjnych do optymalizacji modeli głębokiego uczenia się.
”למידה עמוקה אבולוציונית, אלגוריתמים גנטיים, ורשתות עצביות” הוא ספר החוקר את הצטלבות הלמידה העמוקה והמיחשוב האבולוציוני, ומספק לקוראים הבנה מקיפה כיצד ניתן לשלב את שני התחומים הללו ליצירת מערכות בינה מלאכותית חזקות ומותאמות יותר. הספר מורכב מארבעה חלקים, שכל אחד מהם מתמקד בהיבטים שונים של למידה מעמיקה אבולוציונית: התחלה, ייעול למידה עמוקה, יישומים מתקדמים ולמידת חיזוק. החלק הראשון מספק הקדמה ללמידה עמוקה אבולוציונית, המכסה נושאים כמו עקרונות המחשוב האבולוציוני, האלגוריתמים הגנטיים ומסגרת DEEP (אבולוציה דיפרנציאלית, תכנות אבולוציוני ואופטימיזציה של נחילי חלקיקים). סעיף זה כולל גם דוגמאות מעשיות כיצד להשתמש במחשוב אבולוציוני כדי לייעל מודלים של למידה עמוקה.''
'Evrimsel Derin Öğrenme, Genetik Algoritmalar ve nir Ağları', derin öğrenme ve evrimsel hesaplamanın kesişimini araştıran ve okuyuculara bu iki alanın daha güçlü ve uyarlanabilir AI sistemleri oluşturmak için nasıl birleştirilebileceğine dair kapsamlı bir anlayış sağlayan bir kitaptır. Kitap, her biri evrimsel derin öğrenmenin farklı yönlerine odaklanan dört bölümden oluşuyor: başlamak, derin öğrenmeyi optimize etmek, gelişmiş uygulamalar ve pekiştirmeli öğrenme. İlk bölüm, evrimsel bilgi işlem ilkeleri, genetik algoritmalar ve DEEP çerçevesi (Diferansiyel Evrim, Evrimsel Programlama ve Parçacık Swarm Optimizasyonu) gibi konuları kapsayan evrimsel derin öğrenmeye bir giriş sağlar. Bu bölüm aynı zamanda derin öğrenme modellerini optimize etmek için evrimsel hesaplamanın nasıl kullanılacağına dair pratik örnekler içermektedir.
«التعلم العميق التطوري والخوارزميات الجينية والشبكات العصبية» هو كتاب يستكشف تقاطع التعلم العميق والحوسبة التطورية، مما يوفر للقراء فهمًا شاملاً لكيفية دمج هذين المجالين لإنشاء أنظمة ذكاء اصطناعي أكثر قوة وقابلة للتكيف. يتكون الكتاب من أربعة أجزاء، يركز كل منها على جوانب مختلفة من التعلم العميق التطوري: البدء، وتحسين التعلم العميق، والتطبيقات المتقدمة، والتعلم المعزز. يقدم الجزء الأول مقدمة للتعلم العميق التطوري، ويغطي موضوعات مثل مبادئ الحوسبة التطورية والخوارزميات الجينية وإطار DEEP (التطور التفاضلي والبرمجة التطورية وتحسين أسراب الجسيمات). يتضمن هذا القسم أيضًا أمثلة عملية لكيفية استخدام الحوسبة التطورية لتحسين نماذج التعلم العميق.
'Evolutionary Deep arning, Genetic Algorithms 및 Neural Networks'는 딥 러닝과 진화 컴퓨팅의 교차점을 탐색하여이 두 분야를 결합하여보다 강력하고 적응 가능한 AI 시스템을 만드는 방법을 포괄적으로 이해합니다. 이 책은 진화론 적 딥 러닝의 다양한 측면에 중점을 둔 네 부분으로 구성되어 있습니다: 시작, 딥 러닝 최적화, 고급 응용 프로그램 및 강화 학습. 첫 번째 부분은 진화 컴퓨팅, 유전자 알고리즘 및 DEEP 프레임 워크 (차등 진화, 진화 프로그래밍 및 입자 군집 최적화) 와 같은 주제를 다루는 진화 딥 러닝에 대한 소개를 제공합니다. 이 섹션에는 딥 러닝 모델을 최적화하기 위해 진화 컴퓨팅을 사용하는 방법에 대한 실용적인 예도 포함되어 있습니
「Evolutionary Deep arning、 Genetic Algorithms、およびNeural Networks」は、ディープラーニングと進化的コンピューティングの交差点を探求し、これら2つの分野をどのように組み合わせてより強力で適応可能なAIシステムを作成できるかについての包括的な理解を提供する本です。この本は4つの部分で構成されており、それぞれが進化的ディープラーニングのさまざまな側面に焦点を当てています。第1部では、進化的ディープラーニングの紹介を行い、進化的コンピューティングの原理、遺伝的アルゴリズム、DEEPフレームワーク(Differential Evolution、 Evolutionary Programming、 Particle Swarm Optimization)などを取り上げます。このセクションでは、進化的コンピューティングを使用してディープラーニングモデルを最適化する方法の実例も紹介します。
「進化深度學習,遺傳算法和神經網絡」是一本探討深度學習與進化計算的交集的書,為讀者提供了有關如何將這兩個領域結合在一起以創建更強大,更適應的AI系統的詳盡見解。該書分為四個部分,每個部分都涉及進化深度學習的不同方面:入門,深度學習優化,高級應用和強化學習。第一部分介紹了進化深度學習的介紹,涵蓋了進化計算原理,遺傳算法和DEEP框架(差異進化,進化編程和粒子交換優化)等主題。本節還包括如何利用進化計算優化深度學習模型的實用示例。

You may also be interested in:

Machine Learning and Data Mining for Sports Analytics: 9th International Workshop, MLSA 2022, Grenoble, France, September 19, 2022, Revised Selected … in Computer and Information Science, 1783)
Learn Python Programming for Beginners: The Best Step-by-Step Guide for Coding with Python, Great for Kids and Adults. Includes Practical Exercises on Data Analysis, Machine Learning and More.
Bayesian Signal Processing Classical, Modern, and Particle Filtering Methods (Adaptive and Cognitive Dynamic Systems Signal Processing, Learning, Communications and Control) 2nd Edition
Classical Music 101: A Complete Guide to Learning and Loving Classical Music
SQL Programming The Ultimate Step-By-Step Guide to Learning SQL for Beginners
Machine Learning and Optimization for Engineering Design (Engineering Optimization: Methods and Applications)
Making Music Cooperatively: Using Cooperative Learning in Your Active Music-Making Classroom
Classical Music 101 A Complete Guide to Learning and Loving Classical Music
Vocabulary Learning Strategies and Foreign Language Acquisition (Second Language Acquisition Book 27)
The Emotional Rollercoaster of Language Teaching (Psychology of Language Learning and Teaching, 4) (Volume 4)
Discontinuity in Second Language Acquisition: The Switch between Statistical and Grammatical Learning (Second Language Acquisition, 80)
Battling Healthcare Burnout Learning to Love the Job You Have, While Creating the Job You Love
The Best Python Programming Step-By-Step Beginners Guide: Easily Master Software engineering with Machine Learning, Data Structures, Syntax, Django Object-Oriented Programming, and AI application
Computer Programming And Cyber Security for Beginners This Book Includes Python Machine Learning, SQL, Linux, Hacking with Kali Linux, Ethical Hacking. Coding and Cybersecurity Fundamentals
Advanced Analytics and Learning on Temporal Data: 6th ECML PKDD Workshop, AALTD 2021, Bilbao, Spain, September 13, 2021, Revised Selected Papers (Lecture Notes in Computer Science Book 13114)
Early Childhood Counts: A Programming Guide on Early Childhood Care for Development (WBI Learning Resources Series) by Evans, Judith L., Myers, Robert G., Ilfeld, Ellen M (2000) Paperback
Python for Data Science Master Data Analysis from Scratch, with Business Analytics Tools and Step-by-Step techniques for Beginners. The Future of Machine Learning & Applied Artificial Intelligence
Programming Puzzles: Python Edition: Learning Python Programming for Beginners and Experienced Programmers [Increasingly Challenging Python Challenges with Solutions]
hacking with kali linux for beginners A Beginner’s Guide to Learning All the Basic of Kali Linux and Cybersecurity and Getting Started with Networking, Scripting, and Security in Kali
Spanish ( Easy Spanish ) Most Common Spanish Verbs: A to Z, the 100 Verbs with Translation, Bilingual Text and Example Sentences (Foreign Language Learning Guides)
Python for Beginners A Step by Step Guide to Python Programming, Data Science, and Predictive Model. A Practical Introduction to Machine Learning with Python
Python Programming for Beginners The ultimate crash course in Python programming. A comprehensive guide to mastering the powerful programming language and learn machine learning
Practical Data Science with Jupyter Explore Data Cleaning, Pre-processing, Data Wrangling, Feature Engineering and Machine Learning using Python and Jupyter
Worship Guitar In Six Weeks: A Complete Beginner|s Guide to Learning Rhythm Guitar for Christian Worship Music (Guitar Authority Series Book 1)
SQL Programming How To Learn SQL, The Practical Step-by-Step Guide. New Enhanced Learning Strategies In SQL Languages And Coding
Young Scientists: Learning Basic Chemistry (Ages 9 and Up): Chemistry Books for Kids (Children|s Chemistry Books)
Python Data Science: 3 Books in 1: Hands on Learning for Beginners+A Hands-on Guide Beyond the Basics+A Hands-On Guide For Experts
Arduino User Guide Beginner|s Guide on Getting Started with Arduino & Tips for Learning Arduino Programming
Arduino User Guide Beginner|s Guide on Getting Started with Arduino & Tips for Learning Arduino Programming
Learning Language through Task Repetition (Task-Based Language Teaching)
History as Art, Art as History (Teaching Learning Social Justice)
Equity and Trusts: A Problem-Based Approach (Problem Based Learning)
Python for beginners Step-By-Step Guide to Learning Python Programming
Design Patterns by Tutorials Learning design patterns in Swift 4.2, Second Edition
Image Processing and Machine Learning, Volume 1 Foundations of Image Processing
Learn Python Programming A Beginners Guide to Learn the Hard Way Visually in One Day and Learn It Well Hands-on Learning With Basics Of Computer Language And Python Coding With Practical Exercises
Business Intelligence An Essential Beginner’s Guide to BI, Big Data, Artificial Intelligence, Cybersecurity, Machine Learning, Data Science, Data Analytics, Social Media and Internet Marketing
Arduino User Guide: Beginner|s Guide on Getting Started with Arduino and Tips for Learning Arduino Programming
Data Analytics and Machine Learning: Navigating the Big Data Landscape (Studies in Big Data, 145)
Network Science with Python: Explore the networks around us using Network Science, Social Network Analysis and Machine Learning