BOOKS - Lecture Notes on Karger's Min-Cut Algorithm
Lecture Notes on Karger
ECO~17 kg CO²

2 TON

Views
77434

Telegram
 
Lecture Notes on Karger's Min-Cut Algorithm
Author: Eric Vigoda
Year: 2010
Format: PDF
File size: PDF 112 KB
Language: English



Pay with Telegram STARS
Lecture Notes on Karger's MinCut Algorithm Introduction The Karger's MinCut algorithm is a powerful tool for solving the minimum cut problem in graph theory, which has numerous applications in various fields such as computer networks, social networks, and web search. The algorithm was first introduced by David Karger in 1996 and has since been widely used and studied in the field of computer science. In this lecture note, we will explore the details of the algorithm and its properties, providing a comprehensive understanding of its functionality and applications. Background The minimum cut problem is a fundamental problem in graph theory that involves finding the minimum number of edges to be cut in a graph to separate it into two disjoint parts. The problem has many practical applications, such as network design, resource allocation, and web search. The Karger's MinCut algorithm is based on the idea of iteratively removing edges from the graph until the number of connected components is reduced to one. The algorithm starts with an initial graph and iteratively contracts edges until only one connected component remains. Properties of Karger's MinCut Algorithm The Karger's MinCut algorithm has several desirable properties, including: 1. Optimality: The algorithm guarantees the optimal solution to the minimum cut problem, meaning that it always finds the minimum number of edges to be cut to separate the graph into two disjoint parts. 2.
cture Notes on Karger's MinCut Algorithm Введение Алгоритм Каргера MinCut является мощным инструментом для решения задачи минимального разреза в теории графов, которая имеет многочисленные применения в различных областях, таких как компьютерные сети, социальные сети и веб-поиск. Алгоритм был впервые представлен Дэвидом Каргером в 1996 году и с тех пор широко используется и изучается в области компьютерных наук. В этой заметке к лекции мы изучим детали алгоритма и его свойства, обеспечивая всестороннее понимание его функциональности и приложений. Задача о минимальном разрезании - фундаментальная задача в теории графов, которая включает нахождение минимального числа рёбер, которые должны быть разрезаны в графе, чтобы разделить его на две непересекающиеся части. Проблема имеет множество практических применений, таких как проектирование сети, распределение ресурсов и веб-поиск. Алгоритм Каргера MinCut основан на идее итеративного удаления рёбер из графа до тех пор, пока число связных компонент не сократится до единицы. Алгоритм начинается с начального графа и итеративно стягивает рёбра до тех пор, пока не останется только одна связная компонента. Свойства алгоритма Каргера MinCut Алгоритм Каргера MinCut имеет несколько желательных свойств, в том числе: 1. Оптимальность: Алгоритм гарантирует оптимальное решение задачи минимального разреза, то есть он всегда находит минимальное число рёбер, которые нужно разрезать, чтобы разделить граф на две непересекающиеся части. 2.
cture Notes on Karger's MinCut Algorithm Introduction L'algorithme de Carger MinCut est un outil puissant pour résoudre le problème de la coupe minimale dans la théorie des graphes, qui a de nombreuses applications dans différents domaines tels que les réseaux informatiques, les réseaux sociaux et la recherche Web. L'algorithme a été présenté pour la première fois par David Karger en 1996 et a depuis été largement utilisé et étudié dans le domaine de l'informatique. Dans cette note de conférence, nous examinerons les détails de l'algorithme et ses propriétés, assurant une compréhension complète de sa fonctionnalité et de ses applications. La tâche de découpe minimale est une tâche fondamentale dans la théorie des graphes, qui consiste à trouver un nombre minimum d'arêtes qui doivent être coupées dans le graphe pour le diviser en deux parties discontinues. problème a de nombreuses applications pratiques telles que la conception de réseau, l'allocation de ressources et la recherche Web. L'algorithme de Carger MinCut est basé sur l'idée de supprimer itérativement les arêtes du graphe jusqu'à ce que le nombre de composants connectés soit réduit à un. L'algorithme commence par le graphe initial et tire itérativement les côtes jusqu'à ce qu'il n'y ait qu'un seul composant de liaison. Propriétés de l'algorithme de Carger MinCut L'algorithme de Carger MinCut a plusieurs propriétés souhaitables, dont : 1. Optimalité : L'algorithme garantit une solution optimale au problème de la coupe minimale, c'est-à-dire qu'il trouve toujours le nombre minimum d'arêtes à couper pour diviser le graphe en deux parties disjointes. 2.
cture Notes on Karger's MinCut Algorithm Introducción algoritmo de Carger MinCut es una poderosa herramienta para resolver el problema de corte mínimo en la teoría de gráficos, que tiene numerosas aplicaciones en diversos campos como las redes informáticas, las redes sociales y la búsqueda web. algoritmo fue introducido por primera vez por David Carger en 1996 y desde entonces ha sido ampliamente utilizado y estudiado en el campo de las ciencias de la computación. En esta nota a la conferencia estudiaremos los detalles del algoritmo y sus propiedades, proporcionando una comprensión completa de su funcionalidad y aplicaciones. problema de corte mínimo es un problema fundamental en la teoría de grafos, que implica encontrar un número mínimo de aristas que deben ser cortadas en un grafo para dividirlo en dos partes discontinuas. problema tiene muchas aplicaciones prácticas, como diseño de redes, asignación de recursos y búsqueda web. algoritmo de Carger MinCut se basa en la idea de eliminar iterativamente las aristas del gráfico hasta que el número de componentes enlazados se reduce a uno. algoritmo comienza con un grafo inicial y tira iterativamente de los bordes hasta que sólo queda un componente coherente. Propiedades del algoritmo de Carger MinCut algoritmo de Carger MinCut tiene varias propiedades deseables, incluyendo: 1. Optimalidad: algoritmo garantiza una solución óptima para un problema de corte mínimo, es decir, siempre encuentra el número mínimo de aristas que hay que cortar para dividir el gráfico en dos partes discontinuas. 2.
tture Note on Karger's Algorithm Introduzione Algoritmo di Karger è uno strumento potente per affrontare la sfida del taglio minimo nella teoria dei grafici, che ha numerose applicazioni in diversi ambiti come i computer, i social media e la ricerca web. L'algoritmo è stato presentato per la prima volta da David Carger nel 1996 e da allora è stato ampiamente utilizzato e studiato nel campo delle scienze informatiche. In questa nota di conferenza esamineremo i dettagli dell'algoritmo e le sue proprietà, fornendo una comprensione completa della sua funzionalità e delle sue applicazioni. La sfida di taglio minimo è un compito fondamentale nella teoria dei grafici, che include la presenza di un numero minimo di costole da tagliare in un campo per dividerlo in due parti non interferenti. Il problema ha molte applicazioni pratiche, come la progettazione della rete, la distribuzione delle risorse e la ricerca Web. L'algoritmo di Karger MinCut si basa sull'idea di rimuovere iterativamente le costole dal grafico fino a ridursi a un'unità. L'algoritmo inizia con il grafico iniziale e taglia iterativamente le costole fino a quando non rimane un solo componente collegato. Proprietà dell'algoritmo di Karger L'algoritmo di Karger ha diverse proprietà desiderabili, tra cui: 1. Ottimismo: l'algoritmo garantisce una soluzione ottimale all'operazione di taglio minimo, cioè trova sempre il numero minimo di costole da tagliare per dividere il grafico in due parti non inerenti. 2.
cture Notes on Karger 's MinCut Algorithm Einführung Der MinCut-Algorithmus von Karger ist ein leistungsfähiges Werkzeug zur Lösung des Minimalschnittproblems in der Graphentheorie, das zahlreiche Anwendungen in verschiedenen Bereichen wie Computernetzwerken, sozialen Medien und der Websuche hat. Der Algorithmus wurde erstmals 1996 von David Karger eingeführt und ist seitdem in der Informatik weit verbreitet und erforscht. In dieser Vorlesungsnotiz untersuchen wir die Details des Algorithmus und seiner Eigenschaften und bieten ein umfassendes Verständnis seiner Funktionalität und Anwendungen. Das Problem des minimalen Schneidens ist eine grundlegende Aufgabe in der Graphentheorie, bei der eine minimale Anzahl von Kanten gefunden wird, die in einem Graphen geschnitten werden müssen, um sie in zwei nicht überlappende Teile zu teilen. Das Problem hat viele praktische Anwendungen wie Netzwerkdesign, Ressourcenzuweisung und Websuche. Der MinCut-Algorithmus von Karger basiert auf der Idee, Kanten iterativ aus dem Graphen zu entfernen, bis die Anzahl der zusammenhängenden Komponenten auf eins reduziert ist. Der Algorithmus beginnt mit dem Startgraphen und zieht die Kanten iterativ zusammen, bis nur noch eine zusammenhängende Komponente übrig ist. Eigenschaften des MinCut-Algorithmus von Karger Der MinCut-Algorithmus von Karger hat mehrere wünschenswerte Eigenschaften, einschließlich: 1. Optimalität: Der Algorithmus garantiert eine optimale Lösung des Minimalschnittproblems, das heißt, er findet immer die minimale Anzahl von Kanten, die geschnitten werden müssen, um den Graph in zwei nicht überlappende Teile zu teilen. 2.
''
Karger'in MinCut Algoritması Hakkında Ders Notları Giriş MinCut Karger algoritması, bilgisayar ağları, sosyal ağlar ve web araması gibi çeşitli alanlarda çok sayıda uygulamaya sahip olan grafik teorisindeki minimal kesim problemini çözmek için güçlü bir araçtır. Algoritma ilk olarak 1996 yılında David Karger tarafından tanıtıldı ve o zamandan beri bilgisayar bilimlerinde yaygın olarak kullanıldı ve incelendi. Bu ders notunda, algoritmanın ve özelliklerinin ayrıntılarını inceleyeceğiz ve işlevselliği ve uygulamaları hakkında kapsamlı bir anlayış sağlayacağız. Minimal kesme problemi, grafik teorisinde, iki ayrık parçaya bölmek için bir grafikte kesilmesi gereken minimum kenar sayısını bulmayı içeren temel bir problemdir. Sorun, ağ tasarımı, kaynak tahsisi ve web araması gibi birçok pratik uygulamaya sahiptir. Karger MinCut algoritması, bağlı bileşenlerin sayısı bire indirilene kadar bir grafikten yinelemeli olarak kenarları kaldırma fikrine dayanır. Algoritma ilk grafikle başlar ve yalnızca bir bağlı bileşen kalana kadar kenarları yinelemeli olarak daraltır. MinCut Karger algoritmasının özellikleri MinCut Karger algoritması, aşağıdakiler de dahil olmak üzere birçok istenen özelliğe sahiptir: 1. Optimalite: Algoritma, minimum kesim problemine en uygun çözümü garanti eder, yani grafiği iki ayrık parçaya bölmek için kesilmesi gereken minimum kenar sayısını her zaman bulur.
Karger的MinCut Algorithm簡介Karger的MinCut算法是解決圖論中最小切口問題的有力工具,在計算機網絡,社交媒體和Web搜索等各個領域都有許多應用。該算法由David Karger於1996首次提出,此後已在計算機科學領域廣泛使用和研究。在講座的註釋中,我們將研究算法的細節及其屬性,從而全面了解其功能和應用。最小切割問題是圖論中的基本問題,涉及找到必須在圖中切割的最小邊緣數以將其分為兩個不相交的部分。該問題有許多實際應用,例如網絡設計,資源分配和Web搜索。MinCut的Karger算法基於叠代從圖形中刪除邊緣的想法,直到連接分量的數量減少到1。該算法從初始圖開始,並叠代地拉動邊緣,直到僅剩下一個連接組件為止。Karger的MinCut算法屬性Karger的MinCut算法具有幾個理想屬性,包括:1。最優性:該算法保證了最小切口問題的最佳解決方案,即它始終找到要切開以將圖分為兩個不相交部分的最小邊緣數。2.

You may also be interested in:

Algorithms and Discrete Applied Mathematics: 9th International Conference, CALDAM 2023, Gandhinagar, India, February 9-11, 2023, Proceedings (Lecture Notes in Computer Science)
Bioinformatics and Biomedical Engineering: Third International Conference, IWBBIO 2015, Granada, Spain, April 15-17, 2015. Proceedings, Part I (Lecture Notes in Computer Science, 9043)
Algorithmic Learning Theory: 18th International Conference, ALT 2007, Sendai, Japan, October 1-4, 2007, Proceedings (Lecture Notes in Computer Science, 4754)
Learning in the Age of Digital and Green Transition: Proceedings of the 25th International Conference on Interactive Collaborative Learning (ICL2022), … (Lecture Notes in Networks and Systems, 6
Software Engineering Research in System Science: Proceedings of 12th Computer Science On-line Conference 2023, Volume 1 (Lecture Notes in Networks and Systems Book 722)
Artificial General Intelligence: 16th International Conference, AGI 2023, Stockholm, Sweden, June 16-19, 2023, Proceedings (Lecture Notes in Computer Science Book 13921)
Computational Data and Social Networks: 9th International Conference, CSoNet 2020, Dallas, TX, USA, December 11-13, 2020, Proceedings (Lecture Notes in Computer Science, 12575)
Algorithms and Models for the Web-Graph: 7th International Workshop, WAW 2010, Stanford, CA, USA, December 13-14, 2010, Proceedings (Lecture Notes in Computer Science, 6516)
Integer Programming and Combinatorial Optimization: 21st International Conference, IPCO 2020, London, UK, June 8-10, 2020, Proceedings (Lecture Notes in Computer Science Book 12125)
Engineering Multi-Agent Systems: 8th International Workshop, EMAS 2020, Auckland, New Zealand, May 8-9, 2020, Revised Selected Papers (Lecture Notes in Computer Science)
Testing Software and Systems: 35th IFIP WG 6.1 International Conference, ICTSS 2023, Bergamo, Italy, September 18-20, 2023, Proceedings (Lecture Notes in Computer Science, 14131)
Formal Concept Analysis: 17th International Conference, ICFCA 2023, Kassel, Germany, July 17-21, 2023, Proceedings (Lecture Notes in Computer Science Book 13934)
Numerical Methods and Applications: 10th International Conference, NMA 2022, Borovets, Bulgaria, August 22-26, 2022, Proceedings (Lecture Notes in Computer Science Book 13858)
IoT Technologies for HealthCare: 9th EAI International Conference, HealthyIoT 2022, Braga, Portugal, November 16-18, 2022, Proceedings (Lecture Notes … and Telecommunications Engineering)
Arithmetic of Finite Fields: 9th International Workshop, WAIFI 2022, Chengdu, China, August 29 - September 2, 2022, Revised Selected Papers (Lecture Notes in Computer Science)
Artificial Intelligence and Soft Computing: 12th International Conference, ICAISC 2013, Zakopane, Poland, June 9-13, 2013, Proceedings, Part I (Lecture Notes in Computer Science, 7894)
Machine Learning and Computational Intelligence Techniques for Data Engineering: Proceedings of the 4th International Conference MISP 2022, Volume 2 (Lecture Notes in Electrical Engineering Book 998)
Languages and Compilers for Parallel Computing: 35th International Workshop, LCPC 2022, Chicago, IL, USA, October 12-14, 2022, Revised Selected Papers (Lecture Notes in Computer Science)
Applied Cryptography and Network Security: 21st International Conference, ACNS 2023, Kyoto, Japan, June 19-22, 2023, Proceedings, Part I (Lecture Notes in Computer Science, 13905)
Augmented Intelligence and Intelligent Tutoring Systems: 19th International Conference, ITS 2023, Corfu, Greece, June 2-5, 2023, Proceedings (Lecture Notes in Computer Science Book 13891)
Computer Vision - ECCV 2020 Workshops: Glasgow, UK, August 23-28, 2020, Proceedings, Part V (Lecture Notes in Computer Science)
50 Years of Artificial Intelligence: Essays Dedicated to the 50th Anniversary of Artificial Intelligence (Lecture Notes in Computer Science, 4850)
Recent Trends in Mechanical Engineering: Select Proceedings of PRIME 2021 (Lecture Notes in Mechanical Engineering)
Recent Developments in Electrical and Electronics Engineering: Select Proceedings of ICRDEEE 2022 (Lecture Notes in Electrical Engineering Book 979)
Transactions on Large-Scale Data- and Knowledge-Centered Systems LIV: Special Issue on Data Management - Principles, Technologies, and Applications (Lecture Notes in Computer Science Book 14160)
Lean and Agile Software Development: 5th International Conference, LASD 2021, Virtual Event, January 23, 2021, Proceedings (Lecture Notes in Business Information Processing Book 408)
Mobile Networks and Management: 12th EAI International Conference, MONAMI 2022, Virtual Event, October 29-31, 2022, Proceedings (Lecture Notes of the Institute … Telecommunications Engineering B
Information Security and Cryptology: 18th International Conference, Inscrypt 2022, Beijing, China, December 11-13, 2022, Revised Selected Papers (Lecture Notes in Computer Science Book 13837)
Research in Computational Molecular Biology: 27th Annual International Conference, RECOMB 2023, Istanbul, Turkey, April 16-19, 2023, Proceedings (Lecture Notes in Computer Science Book 13976)
Enterprise Design, Operations, and Computing: 27th International Conference, EDOC 2023, Groningen, The Netherlands, October 30 - November 3, 2023, … (Lecture Notes in Computer Science, 14367)
Gerontechnology V: Contributions to the Fifth International Workshop on Gerontechnology, IWoG 2022, November 17-18, 2022, Evora, Portugal, and Caceres, Spain (Lecture Notes in Bioengineering)
Advances in Small Satellite Technologies: Proceedings of National Conference on Small Satellite Technology and Applications, NCSSTA 2020 (Lecture Notes in Mechanical Engineering)
Computational Science and Its Applications - ICCSA 2023 Workshops: Athens, Greece, July 3-6, 2023, Proceedings, Part VIII (Lecture Notes in Computer Science)
Intelligent Computer Mathematics: 16th International Conference, CICM 2023, Cambridge, UK, , September 5-8, 2023 Proceedings (Lecture Notes in Computer Science, 14101)
Networks and Systems in Cybernetics: Proceedings of 12th Computer Science On-line Conference 2023, Volume 2 (Lecture Notes in Networks and Systems Book 723)
Database Systems for Advanced Applications: 28th International Conference, DASFAA 2023, Tianjin, China, April 17-20, 2023, Proceedings, Part III (Lecture Notes in Computer Science Book 13945)
Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2020, Ghent, Belgium, September 14-18, 2020, Proceedings, Part I (Lecture Notes in Computer Science Book 12457)
Artificial Intelligence Application in Networks and Systems: Proceedings of 12th Computer Science On-line Conference 2023, Volume 3 (Lecture Notes in Networks and Systems, 724)
Reliability and Statistics in Transportation and Communication: Selected Papers from the 19th International Conference on Reliability and Statistics … (Lecture Notes in Networks and Systems, 117
Computational Science and Its Applications - ICCSA 2023 Workshops: Athens, Greece, July 3-6, 2023, Proceedings, Part III (Lecture Notes in Computer Science, 14106)