BOOKS - Mathematics of Machine Learning
Mathematics of Machine Learning - Prof. Philippe Rigollet 2015 PDF  BOOKS
ECO~25 kg CO²

3 TON

Views
70468

Telegram
 
Mathematics of Machine Learning
Author: Prof. Philippe Rigollet
Year: 2015
Format: PDF
File size: PDF 2.7 MB
Language: English



Pay with Telegram STARS
Varian. Book Description: 'Mathematics of Machine Learning' by Hal R. Varian provides an overview of the mathematical foundations of machine learning, including linear regression, classification, neural networks, clustering, and deep learning. The book covers topics such as probability theory, gradient descent, and optimization methods, providing readers with a comprehensive understanding of the field. It also includes practical examples and exercises to help readers apply their knowledge in real-world scenarios. --- Long Description: In today's fast-paced technological world, it is essential to understand the process of technology evolution and its impact on human society. With the rise of machine learning, a subfield of artificial intelligence, it is crucial to develop a personal paradigm for perceiving the technological process of developing modern knowledge. This paradigm can serve as the basis for the survival of humanity and the unification of people in a warring state. In 'Mathematics of Machine Learning', author Hal R. Varian provides an in-depth look at the mathematical foundations of machine learning, offering readers a comprehensive understanding of the field. The book begins with an introduction to probability theory, setting the stage for the rest of the content. It then delves into linear regression, exploring the concepts of linear regression and its applications in machine learning.
Вариан. «Математика машинного обучения» Хэла Р. Вариана дает обзор математических основ машинного обучения, включая линейную регрессию, классификацию, нейронные сети, кластеризацию и глубокое обучение. Книга охватывает такие темы, как теория вероятностей, градиентный спуск и методы оптимизации, предоставляя читателям всестороннее понимание поля. Он также включает практические примеры и упражнения, чтобы помочь читателям применить свои знания в реальных сценариях. - Длинное описание: В современном быстро развивающемся технологическом мире важно понимать процесс эволюции технологий и его влияние на человеческое общество. С подъемом машинного обучения, подполя искусственного интеллекта, крайне важно выработать личностную парадигму восприятия технологического процесса развития современных знаний. Эта парадигма может служить основой для выживания человечества и объединения людей в воюющем государстве. В «Математике машинного обучения» автор Хэл Р. Вариан подробно рассматривает математические основы машинного обучения, предлагая читателям всестороннее понимание этой области. Книга начинается с введения в теорию вероятностей, подготавливая почву для остального содержания. Затем он углубляется в линейную регрессию, исследуя понятия линейной регрессии и её применения в машинном обучении.
Varian. « Machine arning Mathematics » de Hal R. Varian donne un aperçu des bases mathématiques de l'apprentissage automatique, y compris la régression linéaire, la classification, les réseaux neuronaux, le clustering et l'apprentissage profond. livre couvre des sujets tels que la théorie des probabilités, la descente en gradient et les méthodes d'optimisation, offrant aux lecteurs une compréhension complète du champ. Il comprend également des exemples pratiques et des exercices pour aider les lecteurs à appliquer leurs connaissances dans des scénarios réels. - Longue description : Dans le monde technologique en évolution rapide d'aujourd'hui, il est important de comprendre le processus d'évolution de la technologie et son impact sur la société humaine. Avec l'essor de l'apprentissage automatique, le sous-sol de l'intelligence artificielle, il est essentiel de développer un paradigme personnel de la perception du processus technologique du développement des connaissances modernes. Ce paradigme peut servir de base à la survie de l'humanité et à l'unification des hommes dans un État en guerre. Dans Mathematics of Machine arning, l'auteur Hal R. Varian examine en détail les bases mathématiques de l'apprentissage automatique, offrant aux lecteurs une compréhension complète de ce domaine. livre commence par une introduction à la théorie des probabilités, préparant le terrain pour le reste du contenu. Il s'oriente ensuite vers la régression linéaire, explorant les concepts de régression linéaire et ses applications dans l'apprentissage automatique.
Varian. «Machine arning Mathematics» de Hal R. Varian ofrece una visión general de los fundamentos matemáticos del aprendizaje automático, incluyendo regresión lineal, clasificación, redes neuronales, agrupamiento y aprendizaje profundo. libro abarca temas como la teoría de la probabilidad, el descenso gradiente y las técnicas de optimización, proporcionando a los lectores una comprensión integral del campo. También incluye ejemplos prácticos y ejercicios para ayudar a los lectores a aplicar sus conocimientos en escenarios reales. - Descripción larga: En el mundo tecnológico en rápida evolución actual, es importante comprender el proceso de evolución de la tecnología y su impacto en la sociedad humana. Con el auge del aprendizaje automático, un subcampo de la inteligencia artificial, es fundamental desarrollar un paradigma personal de percepción del proceso tecnológico del desarrollo del conocimiento moderno. Este paradigma puede servir de base para la supervivencia de la humanidad y la unificación de los seres humanos en un Estado en guerra. En Mathematics of Machine arning, el autor Hal R. Varian examina en detalle los fundamentos matemáticos del aprendizaje automático, ofreciendo a los lectores una comprensión integral de este campo. libro comienza con una introducción a la teoría de la probabilidad, preparando el terreno para el resto del contenido. Luego profundiza en la regresión lineal, investigando los conceptos de regresión lineal y sus aplicaciones en el aprendizaje automático.
Varian. «La matematica dell'apprendimento automatico» di Hal R. Varian fornisce una panoramica delle basi matematiche dell'apprendimento automatico, tra cui la regressione lineare, la classificazione, le reti neurali, il clustering e l'apprendimento approfondito. Il libro affronta argomenti quali la teoria delle probabilità, la discesa gradiente e i metodi di ottimizzazione, fornendo ai lettori una comprensione completa del campo. Include anche esempi pratici e esercizi per aiutare i lettori ad applicare le loro conoscenze in scenari reali. - Lunga descrizione: In un mondo tecnologico in continua evoluzione, è importante comprendere l'evoluzione della tecnologia e il suo impatto sulla società umana. Con l'ascesa dell'apprendimento automatico, sotto il profilo dell'intelligenza artificiale, è fondamentale sviluppare un paradigma personale per la percezione del processo tecnologico di sviluppo della conoscenza moderna. Questo paradigma può essere la base per la sopravvivenza dell'umanità e per l'unione delle persone in uno stato in guerra. In «La matematica dell'apprendimento automatico», Hal R. Varian affronta in dettaglio le basi matematiche dell'apprendimento automatico, offrendo ai lettori una comprensione completa di questo campo. Il libro inizia con l'introduzione alla teoria delle probabilità, preparando il terreno per il resto del contenuto. Poi si approfondisce nella regressione lineare, esplorando i concetti di regressione lineare e la sua applicazione nell'apprendimento automatico.
Varian. Hal R. Varians „Mathematics of Machine arning“ gibt einen Überblick über die mathematischen Grundlagen des maschinellen rnens, einschließlich linearer Regression, Klassifizierung, neuronaler Netzwerke, Clustering und Deep arning. Das Buch behandelt Themen wie Wahrscheinlichkeitstheorie, Gradientenabstieg und Optimierungsmethoden und bietet den sern einen umfassenden Einblick in das Feld. Es enthält auch praktische Beispiele und Übungen, um den sern zu helfen, ihr Wissen in realen Szenarien anzuwenden. - Lange Beschreibung: In der heutigen schnelllebigen technologischen Welt ist es wichtig, den technologischen Evolutionsprozess und seine Auswirkungen auf die menschliche Gesellschaft zu verstehen. Mit dem Aufstieg des maschinellen rnens, einem Teilgebiet der künstlichen Intelligenz, ist es entscheidend, ein persönliches Paradigma für die Wahrnehmung des technologischen Prozesses der Entwicklung des modernen Wissens zu entwickeln. Dieses Paradigma kann als Grundlage für das Überleben der Menschheit und die Vereinigung der Menschen in einem kriegführenden Staat dienen. In „Mathematics of Machine arning“ geht der Autor Hal R. Varian ausführlich auf die mathematischen Grundlagen des maschinellen rnens ein und bietet den sern einen umfassenden Einblick in dieses Feld. Das Buch beginnt mit einer Einführung in die Wahrscheinlichkeitstheorie und bereitet den Boden für den Rest des Inhalts. Dann taucht er in die lineare Regression ein und untersucht die Konzepte der linearen Regression und ihre Anwendungen im maschinellen rnen.
''
Varian. Hal R. Varian'ın "Makine Öğrenimi Matematiği", doğrusal regresyon, sınıflandırma, sinir ağları, kümeleme ve derin öğrenme dahil olmak üzere makine öğreniminin matematiksel temellerine genel bir bakış sunar. Kitap, olasılık teorisi, degrade inişi ve optimizasyon teknikleri gibi konuları kapsamakta ve okuyuculara alanı kapsamlı bir şekilde anlamalarını sağlamaktadır. Ayrıca, okuyucuların bilgilerini gerçek dünya senaryolarına uygulamalarına yardımcı olacak pratik örnekler ve alıştırmalar içerir. Günümüzün hızla gelişen teknolojik dünyasında, teknolojinin evrim sürecini ve insan toplumu üzerindeki etkisini anlamak önemlidir. Yapay zekanın alt alanı olan makine öğreniminin yükselişiyle, modern bilginin gelişiminin teknolojik sürecinin algılanması için kişisel bir paradigma geliştirmek son derece önemlidir. Bu paradigma, insanlığın hayatta kalması ve insanların savaşan bir durumda birleşmesi için temel oluşturabilir. "Makine Öğrenimi Matematiği'nde yazar Hal R. Varian, makine öğreniminin matematiksel temellerine ayrıntılı bir bakış atıyor ve okuyuculara alan hakkında kapsamlı bir anlayış sunuyor. Kitap, olasılık teorisine bir giriş ile başlar ve içeriğin geri kalanı için zemin hazırlar. Daha sonra lineer regresyon kavramlarını ve makine öğrenimindeki uygulamasını keşfederek lineer regresyona girer.
瓦裏安。Hal R. Varian的「機器學習數學」概述了機器學習的數學基礎,包括線性回歸,分類,神經網絡,聚類和深度學習。該書涵蓋了概率論,梯度下降和優化方法等主題,為讀者提供了對該領域的全面理解。它還包括實用的示例和練習,以幫助讀者將他們的知識應用於真實場景。-長篇描述:在當今快速發展的技術世界中,了解技術進化的過程及其對人類社會的影響很重要。隨著機器學習的興起,人工智能的子領域,發展對現代知識發展過程感知的人格範式至關重要。這種範式可以作為人類生存和交戰國人民團結的基礎。在《機器學習數學》中,作者Hal R. Varian詳細介紹了機器學習的數學基礎,為讀者提供了對該領域的全面理解。這本書從概率論的介紹開始,為其他內容奠定了基礎。然後,他深入研究線性回歸,研究線性回歸的概念及其在機器學習中的應用。

You may also be interested in:

Machine Learning - A Journey To Deep Learning With Exercises And Answers
Machine Learning and Deep Learning in Natural Language Processing
Machine Learning and Deep Learning in Neuroimaging Data Analysis
Statistical Reinforcement Learning Modern Machine Learning Approaches
Distributional Reinforcement Learning (Adaptive Computation and Machine Learning)
Machine Learning and Deep Learning in Neuroimaging Data Analysis
Machine Learning and Deep Learning in Real-Time Applications
Machine Learning and Deep Learning in Natural Language Processing
Python Machine Learning for Beginners Learning from Scratch Numpy, Pandas, Matplotlib, Seaborn, SKlearn and TensorFlow 2.0
Default Loan Prediction Based On Customer Behavior Using Machine Learning And Deep Learning With Python, Second Edition
Generative AI with Python Harnessing The Power Of Machine Learning And Deep Learning To Build Creative And Intelligent Systems
Learning Genetic Algorithms with Python Empower the Performance of Machine Learning and AI Models with the Capabilities of a Powerful Search Algorithm
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning, 2nd Edition (Final Release)
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning, 2nd Edition (Final Release)
Data Scientist Pocket Guide Over 600 Concepts, Terminologies, and Processes of Machine Learning and Deep Learning Assembled
Machine Learning. Supervised Learning Techniques and Tools Nonlinear Models Exercises with R, SAS, STATA, EVIEWS and SPSS
Machine Learning in Elixir Learning to Learn with Nx and Axon
Machine Learning in Elixir Learning to Learn with Nx and Axon
Programming Machine Learning From Coding to Deep Learning
Machine Learning: Fundamental Algorithms for Supervised and Unsupervised Learning With Real-World Applications (Advanced Data Analytics Book 1)
Data Science Crash Course Thyroid Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI, Second Edition
Machine Learning for Materials Discovery: Numerical Recipes and Practical Applications (Machine Intelligence for Materials Science)
Machine Learning for Beginners A Math Guide to Mastering Deep Learning and Business Application. Understand How Artificial Intelligence, Data Science, and Neural Networks Work Through Real Examples
Mathematics for Machine Technology, Fourth Edition
Machine Learning With Python 3 books in 1 Hands-On Learning for Beginners+An in-Depth Guide Beyond the Basics+A Practical Guide for Experts
Learning Google Cloud Vertex AI: Build, deploy, and manage machine learning models with Vertex AI (English Edition)
Agricultural Informatics Automation Using the IoT and Machine Learning (Advances in Learning Analytics for Intelligent Cloud-IoT Systems)
Learn AI with Python Explore Machine Learning and Deep Learning techniques for Building Smart AI Systems Using Scikit-Learn
Quantum AI Machine Learning and Deep Learning for Everyone A Beginners Guide to Unlocking Business Opportunities by Leveraging the power of AI in Quantum Age
Artificial Intelligence For Business How Your Company Can Make More Profit with Machine Learning, Data Science, Big Data, and Deep Learning
Quantum AI Machine Learning and Deep Learning for Everyone A Beginners Guide to Unlocking Business Opportunities by Leveraging the power of AI in Quantum Age
Artificial Intelligence 4 books in 1 AI For Beginners + AI For Business + Machine Learning For Beginners + Machine Learning And Artificial Intelligence
Learning Pandas 2.0: A Comprehensive Guide to Data Manipulation and Analysis for Data Scientists and Machine Learning Professionals
Machine Learning For Beginners Guide Algorithms Supervised & Unsupervsied Learning. Decision Tree & Random Forest Introduction
Learning Google Cloud Vertex AI Build, deploy, and manage machine learning models with Vertex AI
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Learning Google Cloud Vertex AI Build, deploy, and manage machine learning models with Vertex AI
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Human-in-the-Loop Machine Learning Active learning, annotation and human-computer interaction (MEAP)
Active Machine Learning with Python: Refine and elevate data quality over quantity with active learning