BOOKS - PROGRAMMING - Machine Learning System Design With end-to-end examples (MEAP v...
Machine Learning System Design With end-to-end examples (MEAP v4) - Arseny Kravchenko, Valerii Babushkin 2023 PDF | EPUB Manning Publications BOOKS PROGRAMMING
ECO~14 kg CO²

1 TON

Views
15843

Telegram
 
Machine Learning System Design With end-to-end examples (MEAP v4)
Author: Arseny Kravchenko, Valerii Babushkin
Year: 2023
Pages: 207
Format: PDF | EPUB
File size: 10.1 MB
Language: ENG



The plot of the book "Machine Learning System Design With EndtoEnd Examples MEAP v4" revolves around the need for humanity to understand and adapt to the rapid evolution of technology, particularly in the field of machine learning, in order to survive and thrive in a world where technological advancements are constantly changing the way we live and work. The authors, Arseny Kravchenko and Valeri Babushkin, use their extensive experience in the field to provide a comprehensive guide for designing highly effective and reliable machine learning systems, emphasizing the importance of understanding the entire process from start to finish. The book begins by offering a broad overview of the machine learning system design process, providing readers with a clear and repeatable framework for building, maintaining, and improving systems of any scale. This foundation is essential for navigating the complex multistep process that requires skills from various fields and roles. As the reader progresses through the book, they will learn how to excel at delivering global objectives while diving locally into tools and combining their knowledge into an integrated vision. Throughout the text, the authors include practical examples in Python and R to illustrate key concepts and techniques, making the subject matter more accessible and easier to understand. By the end of the book, readers will have gained a deep understanding of the process of developing modern knowledge as the basis for humanity's survival and the unification of people in a warring state.
Сюжет книги «Проектирование системы машинного обучения с помощью конечных примеров MEAP v4» вращается вокруг необходимости понимания и адаптации человечества к быстрому развитию технологий, особенно в области машинного обучения, чтобы выжить и процветать в мире, где технологические достижения постоянно меняют наш образ жизни и работы. Авторы, Арсений Кравченко и Валерий Бабушкин, используют свой большой опыт в этой области, чтобы предоставить комплексное руководство для проектирования высокоэффективных и надежных систем машинного обучения, подчеркивая важность понимания всего процесса от начала до конца. Книга начинается с широкого обзора процесса проектирования системы машинного обучения, предоставляя читателям четкую и воспроизводимую структуру для создания, обслуживания и улучшения систем любого масштаба. Эта основа необходима для навигации по сложному многоступенчатому процессу, требующему навыков из различных областей и ролей. По мере прохождения книги читатель узнает, как преуспеть в достижении глобальных целей, погружаясь локально в инструменты и объединяя свои знания в интегрированное видение. По всему тексту авторы включают практические примеры на Python и R для иллюстрации ключевых концепций и техник, делая предмет более доступным и понятным. К концу книги читатели получат глубокое понимание процесса развития современных знаний как основы выживания человечества и объединения людей в воюющем государстве.
L'intrigue du livre « Concevoir un système d'apprentissage automatique avec les exemples finaux de MEAP v4 » tourne autour de la nécessité de comprendre et d'adapter l'humanité au développement rapide de la technologie, en particulier dans le domaine de l'apprentissage automatique, pour survivre et prospérer dans un monde où les progrès technologiques changent constamment notre mode de vie et de travail. s auteurs, Arseny Kravchenko et Valery Babushkin, utilisent leur vaste expérience dans ce domaine pour fournir un guide complet pour concevoir des systèmes d'apprentissage automatique hautement efficaces et fiables, soulignant l'importance de comprendre l'ensemble du processus du début à la fin. livre commence par un large examen du processus de conception du système d'apprentissage automatique, offrant aux lecteurs une structure claire et reproductible pour la création, la maintenance et l'amélioration des systèmes à toute échelle. Ce cadre est nécessaire pour naviguer dans un processus complexe en plusieurs étapes qui nécessite des compétences provenant de différents domaines et rôles. Au fur et à mesure que le livre passe, le lecteur apprend à atteindre des objectifs mondiaux en s'immergeant localement dans les outils et en combinant ses connaissances dans une vision intégrée. Dans tout le texte, les auteurs incluent des exemples pratiques sur Python et R pour illustrer les concepts et techniques clés, rendant le sujet plus accessible et compréhensible. À la fin du livre, les lecteurs auront une compréhension approfondie du processus de développement des connaissances modernes comme base de la survie de l'humanité et de l'unification des gens dans un État en guerre.
La trama del libro «Diseñar un sistema de aprendizaje automático con ejemplos finales MEAP v4» gira en torno a la necesidad de comprender y adaptar la humanidad al rápido desarrollo de la tecnología, especialmente en el campo del aprendizaje automático, para sobrevivir y prosperar en un mundo donde los avances tecnológicos cambian constantemente nuestro estilo de vida y de trabajo. autores, Arseni Kravchenko y Valery Babushkin, utilizan su amplia experiencia en este campo para proporcionar una guía integral para diseñar sistemas de aprendizaje automático altamente eficientes y confiables, destacando la importancia de entender todo el proceso de principio a fin. libro comienza con una amplia revisión del proceso de diseño del sistema de aprendizaje automático, proporcionando a los lectores una estructura clara y reproducible para crear, mantener y mejorar sistemas de cualquier escala. Esta base es necesaria para navegar por un complejo proceso de varias etapas que requiere habilidades de diferentes áreas y roles. A medida que el libro pasa, el lector aprende a tener éxito en la consecución de objetivos globales, sumergiéndose localmente en herramientas y uniendo sus conocimientos en una visión integrada. A lo largo del texto, los autores incluyen ejemplos prácticos en Python y R para ilustrar conceptos y técnicas clave, haciendo el tema más accesible y comprensible. Al final del libro, los lectores tendrán una comprensión profunda del proceso de desarrollo del conocimiento moderno como base para la supervivencia de la humanidad y la unión de las personas en un estado en guerra.
A história do livro «Projetando o sistema de aprendizagem de máquinas usando exemplos finais MEAP v4» gira em torno da necessidade de compreender e adaptar a humanidade ao rápido desenvolvimento da tecnologia, especialmente no aprendizado de máquinas, para sobreviver e prosperar em um mundo onde os avanços tecnológicos estão constantemente mudando o nosso estilo de vida e trabalho. Os autores, Arseniy Kravchenko e Valery Babushkin, usam sua vasta experiência nesta área para fornecer um manual completo para projetar sistemas de aprendizado de máquina altamente eficientes e confiáveis, enfatizando a importância de compreender todo o processo do início ao fim. O livro começa com uma ampla revisão do processo de concepção do sistema de aprendizagem de máquinas, fornecendo aos leitores uma estrutura clara e reprodutiva para criar, manter e melhorar sistemas de qualquer escala. Esta base é necessária para navegar em um processo complexo e multifacetado que requer habilidades de diferentes áreas e papéis. À medida que o livro passa, o leitor aprenderá como conseguir alcançar os objetivos globais, mergulhando localmente em ferramentas e unindo seus conhecimentos em uma visão integrada. Em todo o texto, os autores incluem exemplos práticos em Python e R para ilustrar conceitos essenciais e técnica, tornando a matéria mais acessível e compreensível. Ao final do livro, os leitores terão uma compreensão profunda do processo de desenvolvimento dos conhecimentos modernos como base para a sobrevivência da humanidade e a união das pessoas num estado em guerra.
La trama del libro «Progettare un sistema di apprendimento automatico con gli esempi finali di MEAP v4» ruota sulla necessità di comprendere e adattare l'umanità allo sviluppo rapido della tecnologia, in particolare nel campo dell'apprendimento automatico, per sopravvivere e prosperare in un mondo in cui i progressi tecnologici cambiano continuamente il nostro modo di vivere e lavorare. Gli autori, Arseniy Kravchenko e Valery Babushkin, usano la loro grande esperienza in questo campo per fornire una guida completa alla progettazione di sistemi di apprendimento automatico altamente efficienti e affidabili, sottolineando l'importanza di comprendere l'intero processo dall'inizio alla fine. Il libro inizia con una panoramica completa del processo di progettazione del sistema di apprendimento automatico, fornendo ai lettori una struttura chiara e riproduttiva per la creazione, la manutenzione e il miglioramento di qualsiasi tipo di sistema. Questa base è necessaria per navigare su un processo complesso e multi-accessibile che richiede competenze da aree e ruoli diversi. Con il passaggio del libro, il lettore scoprirà come riuscire a raggiungere gli obiettivi globali, immergendosi localmente negli strumenti e unendo le proprie conoscenze in una visione integrata. In tutto il testo, gli autori includono esempi pratici su Python e R per illustrare i concetti chiave e la tecnica, rendendo l'oggetto più accessibile e comprensibile. Alla fine del libro, i lettori avranno una profonda comprensione del processo di sviluppo della conoscenza moderna come base per la sopravvivenza dell'umanità e l'unione delle persone in uno stato in guerra.
Die Handlung des Buches „Design eines maschinellen rnsystems mit endlichen Beispielen von MEAP v4“ dreht sich um die Notwendigkeit, die Menschheit zu verstehen und sich an die rasante Entwicklung der Technologie anzupassen, insbesondere im Bereich des maschinellen rnens, um in einer Welt zu überleben und zu gedeihen, in der der technologische Fortschritt unsere Art zu leben und zu arbeiten ständig verändert. Die Autoren, Arseniy Kravchenko und Valery Babushkin, nutzen ihre große Erfahrung in diesem Bereich, um einen umfassenden itfaden für das Design hocheffizienter und zuverlässiger maschineller rnsysteme bereitzustellen, der die Bedeutung des Verständnisses des gesamten Prozesses von Anfang bis Ende unterstreicht. Das Buch beginnt mit einem umfassenden Überblick über den Design-Prozess eines maschinellen rnsystems und bietet den sern eine klare und reproduzierbare Struktur für die Erstellung, Wartung und Verbesserung von Systemen jeder Größenordnung. Diese Grundlage ist notwendig, um durch einen komplexen mehrstufigen Prozess zu navigieren, der Fähigkeiten aus verschiedenen Bereichen und Rollen erfordert. Im Laufe des Buches lernt der ser, wie er bei der Erreichung globaler Ziele erfolgreich sein kann, indem er lokal in Werkzeuge eintaucht und sein Wissen zu einer integrierten Vision kombiniert. Im gesamten Text enthalten die Autoren praktische Beispiele in Python und R, um die wichtigsten Konzepte und Techniken zu veranschaulichen und das Thema zugänglicher und verständlicher zu machen. Am Ende des Buches werden die ser ein tiefes Verständnis für den Prozess der Entwicklung des modernen Wissens als Grundlage für das Überleben der Menschheit und die Vereinigung der Menschen in einem kriegführenden Staat erhalten.
''
MEAP v4'ün Sonlu Örnekleriyle Bir Makine Öğrenme stemi Tasarlama konusu, teknolojik gelişmelerin yaşadığımız ve çalışma şeklimizi sürekli değiştirdiği bir dünyada hayatta kalmak ve gelişmek için insanlığın teknolojideki, özellikle makine öğrenimindeki hızlı gelişmeleri anlama ve bunlara uyum sağlama ihtiyacı etrafında dönüyor. Yazarlar, Arseniy Kravchenko ve Valery Babushkin, bu alandaki kapsamlı deneyimlerini, tüm süreci baştan sona anlamanın önemini vurgulayarak, yüksek verimli ve güvenilir makine öğrenme sistemleri tasarlamak için kapsamlı bir rehber sağlamak için kullanıyorlar. Kitap, makine öğrenme sistemi tasarım sürecine geniş bir genel bakış ile başlar ve okuyuculara herhangi bir ölçekteki sistemleri oluşturmak, sürdürmek ve geliştirmek için açık ve tekrarlanabilir bir çerçeve sunar. Bu çerçeve, farklı alanlardan ve rollerden beceriler gerektiren karmaşık, çok adımlı bir süreçte gezinmek için gereklidir. Kitap ilerledikçe, okuyucu kendilerini yerel olarak araçlara sokarak ve bilgilerini entegre bir vizyona entegre ederek küresel hedeflere ulaşmada nasıl başarılı olacağını öğrenir. Metin boyunca, yazarlar temel kavramları ve teknikleri göstermek için Python ve R'de pratik örnekler içermekte ve konuyu daha erişilebilir ve anlaşılabilir hale getirmektedir. Kitabın sonunda, okuyucular, insanlığın hayatta kalması ve insanların savaşan bir durumda birleşmesi için temel olarak modern bilginin gelişimi hakkında derin bir anlayışa sahip olacaklar.
تدور حبكة تصميم نظام التعلم الآلي بأمثلة محدودة من MEAP v4 حول حاجة البشرية إلى فهم التقدم السريع في التكنولوجيا والتكيف معه، لا سيما في التعلم الآلي، من أجل البقاء والازدهار في عالم تتغير فيه التطورات التكنولوجية باستمرار الطريقة التي نعيش ونعمل بها. يستخدم المؤلفان، Arseniy Kravchenko و Valery Babushkin، خبرتهما الواسعة في هذا المجال لتوفير دليل شامل لتصميم أنظمة تعلم آلي عالية الكفاءة وموثوقة، مع التأكيد على أهمية فهم العملية برمتها من البداية إلى النهاية. يبدأ الكتاب بلمحة عامة واسعة عن عملية تصميم نظام التعلم الآلي، مما يوفر للقراء إطارًا واضحًا وقابلاً للتكرار لبناء وصيانة وتحسين الأنظمة من أي نطاق. هذا الإطار ضروري للتنقل في عملية معقدة متعددة الخطوات تتطلب مهارات من مجالات وأدوار مختلفة. مع تقدم الكتاب، يتعلم القارئ كيفية النجاح في تحقيق الأهداف العالمية من خلال الانغماس محليًا في الأدوات ودمج معرفتهم في رؤية متكاملة. في جميع أنحاء النص، قام المؤلفون بتضمين أمثلة عملية في Python و R لتوضيح المفاهيم والتقنيات الرئيسية، مما يجعل الموضوع أكثر سهولة وفهمًا. بحلول نهاية الكتاب، سيكون لدى القراء فهم عميق لتطور المعرفة الحديثة كأساس لبقاء البشرية وتوحيد الناس في دولة متحاربة.

You may also be interested in:

Web Testing with Cypress: Run End-to-End tests, Integration tests, Unit tests across web apps, browsers and cross-platforms (English Edition)
Web Automation Testing Using Playwright End-to-end, API, accessibility, and visual testing using Playwright
Machine Learning-based Design and Optimization of High-Speed Circuits
Machine Learning in Production: Master the art of delivering robust Machine Learning solutions with MLOps (English Edition)
Machine Learning for Business The Ultimate Artificial Intelligence & Machine Learning for Managers, Team Leaders and Entrepreneurs
Building Machine Learning Systems Using Python Practice to Train Predictive Models and Analyze Machine Learning Results
Machine Learning for Beginners An Introductory Guide to Learn and Understand Artificial Intelligence, Neural Networks and Machine Learning
Rainbow|s End: Irish-Americans and the Dilemmas of Urban Machine Politics, 1840-1985 (California Series on Social Choice and Political Economy) (Volume 15)
Applied Machine Learning and High-Performance Computing on AWS: Accelerate the development of machine learning applications following architectural best practices
Serverless Machine Learning with Amazon Redshift ML: Create, train, and deploy machine learning models using familiar SQL commands
Machine Learning for Data Streams with Practical Examples in MOA (Adaptive Computation and Machine Learning series)
Machine Learning Master Machine Learning Fundamentals for Beginners, Business Leaders and Aspiring Data Scientists
Online Machine Learning: A Practical Guide with Examples in Python (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Machine Learning with Core ML 2 and Swift A beginner-friendly guide to integrating machine learning into your apps
Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning for Beginners Build and deploy Machine Learning systems using Python, 2nd Edition
Robust Machine Learning: Distributed Methods for Safe AI (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis
Programming With Python 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning
Machine Learning for Beginners A Practical Guide to Understanding and Applying Machine Learning Concepts
Machine Learning, Animated (Chapman and Hall CRC Machine Learning and Pattern Recognition)
Pragmatic Machine Learning with Python Learn How to Deploy Machine Learning Models in Production
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning
Front End Engineering Design of Oil and Gas Projects: Critical Factors for Project Success: Perspectives, Case Studies, and Lessons
Machine Learning for Absolute Beginners An Absolute beginner’s guide to learning and understanding machine learning successfully
Machine Learning with Python The Ultimate Guide to Learn Machine Learning Algorithms. Includes a Useful Section about Analysis, Data Mining and Artificial Intelligence in Business Applications
Self-Service Analytics with Power BI Learn how to build an end-to-end analytics solution in Power BI
Self-Service Analytics with Power BI Learn how to build an end-to-end analytics solution in Power BI
Machine Learning Tutorial: Machine Learning Simply Easy Learning
Machine Learning The Ultimate Guide to Understand Artificial Intelligence and Big Data Analytics. Learn the Building Block Algorithms and the Machine Learning’s Application in the Modern Life
Multi-Criteria Decision-Making and Optimum Design with Machine Learning A Practical Guide
Multi-Criteria Decision-Making and Optimum Design with Machine Learning A Practical Guide
Probabilistic Machine Learning: An Introduction (Adaptive Computation and Machine Learning series)
Machine Learning Interviews Kickstart Your Machine Learning and Data Career (Final)