BOOKS - Fundamental Mathematical Concepts for Machine Learning in Science
Fundamental Mathematical Concepts for Machine Learning in Science - Umberto Michelucci 2024 PDF | EPUB Springer BOOKS
ECO~14 kg CO²

1 TON

Views
76746

Telegram
 
Fundamental Mathematical Concepts for Machine Learning in Science
Author: Umberto Michelucci
Year: 2024
Pages: 259
Format: PDF | EPUB
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
The book "Fundamental Mathematical Concepts for Machine Learning in Science" is a comprehensive guide to understanding the mathematical foundations of machine learning and its applications in various scientific fields. The author, a renowned expert in the field, provides a thorough explanation of the underlying principles and techniques that govern the development of machine learning algorithms and their implementation in real-world scenarios. The book covers a wide range of topics, from linear algebra and calculus to probability theory and statistical inference, all of which are essential for mastering machine learning concepts. The author emphasizes the importance of studying and understanding the process of technological evolution, highlighting the need for a personal paradigm for perceiving the technological process of developing modern knowledge as the basis for the survival of humanity and the survival of the unification of people in a warring state. This perspective is crucial for recognizing the potential of machine learning in addressing complex problems and shaping the future of science and society. The book begins by introducing the fundamental concepts of machine learning, including supervised and unsupervised learning, neural networks, and deep learning. It then delves into the mathematical underpinnings of these concepts, providing readers with a solid foundation for understanding the more advanced topics covered later in the book.
Книга «Фундаментальные математические концепции машинного обучения в науке» представляет собой всеобъемлющее руководство по пониманию математических основ машинного обучения и его приложений в различных научных областях. Автор, известный эксперт в этой области, дает подробное объяснение основополагающих принципов и методов, которые управляют разработкой алгоритмов машинного обучения и их реализацией в реальных сценариях. Книга охватывает широкий круг тем, от линейной алгебры и исчисления до теории вероятностей и статистического вывода, все из которых необходимы для освоения концепций машинного обучения. Автор подчеркивает важность изучения и понимания процесса технологической эволюции, подчеркивая необходимость личностной парадигмы восприятия технологического процесса развития современного знания как основы выживания человечества и выживания объединения людей в воюющем государстве. Эта перспектива имеет решающее значение для признания потенциала машинного обучения в решении сложных проблем и формировании будущего науки и общества. Книга начинается с введения фундаментальных концепций машинного обучения, включая обучение с учителем и без учителя, нейронные сети и глубокое обучение. Затем он углубляется в математические основы этих концепций, предоставляя читателям прочную основу для понимания более продвинутых тем, затронутых позже в книге.
livre « Concepts mathématiques fondamentaux de l'apprentissage automatique en science » est un guide complet pour comprendre les bases mathématiques de l'apprentissage automatique et ses applications dans divers domaines scientifiques. L'auteur, un expert reconnu dans ce domaine, donne une explication détaillée des principes et des méthodes fondamentaux qui dirigent le développement des algorithmes d'apprentissage automatique et leur mise en œuvre dans des scénarios réels. livre couvre un large éventail de sujets, de l'algèbre linéaire et du calcul à la théorie des probabilités et à la conclusion statistique, qui sont tous nécessaires pour apprendre les concepts de l'apprentissage automatique. L'auteur souligne l'importance de l'étude et de la compréhension du processus d'évolution technologique, soulignant la nécessité d'un paradigme personnel de la perception du processus technologique du développement de la connaissance moderne comme base de la survie de l'humanité et de la survie de l'unification des gens dans un État en guerre. Cette perspective est essentielle pour reconnaître le potentiel de l'apprentissage automatique dans la résolution de problèmes complexes et façonner l'avenir de la science et de la société. livre commence par l'introduction des concepts fondamentaux de l'apprentissage automatique, y compris l'apprentissage avec et sans professeur, les réseaux neuronaux et l'apprentissage profond. Il approfondit ensuite les bases mathématiques de ces concepts, offrant aux lecteurs une base solide pour comprendre les sujets plus avancés abordés plus tard dans le livre.
libro «Conceptos matemáticos fundamentales del aprendizaje automático en ciencia» es una guía integral para entender los fundamentos matemáticos del aprendizaje automático y sus aplicaciones en diversos campos científicos. autor, reconocido experto en la materia, da una explicación detallada de los principios y técnicas fundamentales que rigen el desarrollo de algoritmos de aprendizaje automático y su implementación en escenarios reales. libro abarca una amplia gama de temas, desde el álgebra lineal y el cálculo hasta la teoría de la probabilidad y la inferencia estadística, todos los cuales son necesarios para dominar los conceptos del aprendizaje automático. autor destaca la importancia de estudiar y comprender el proceso de evolución tecnológica, destacando la necesidad de un paradigma personal para percibir el proceso tecnológico del desarrollo del conocimiento moderno como base para la supervivencia de la humanidad y la supervivencia de la unión de los seres humanos en un Estado en guerra. Esta perspectiva es crucial para reconocer el potencial del aprendizaje automático en la resolución de problemas complejos y la configuración del futuro de la ciencia y la sociedad. libro comienza con la introducción de conceptos fundamentales del aprendizaje automático, incluyendo el aprendizaje con y sin maestro, redes neuronales y aprendizaje profundo. Luego profundiza en los fundamentos matemáticos de estos conceptos, proporcionando a los lectores una base sólida para entender los temas más avanzados abordados más tarde en el libro.
Il libro «Concetti matematici fondamentali per l'apprendimento automatico nella scienza» è una guida completa per comprendere le basi matematiche dell'apprendimento automatico e delle sue applicazioni in diversi ambiti scientifici. L'autore, un noto esperto in questo campo, fornisce una spiegazione dettagliata dei principi e dei metodi fondamentali che guidano lo sviluppo di algoritmi di apprendimento automatico e la loro implementazione in scenari reali. Il libro comprende una vasta gamma di argomenti, dall'algebra lineare al calcolo alla teoria delle probabilità e delle conclusioni statistiche, tutti necessari per imparare i concetti di apprendimento automatico. L'autore sottolinea l'importanza di studiare e comprendere il processo di evoluzione tecnologica, sottolineando la necessità di un paradigma personale della percezione del processo tecnologico dello sviluppo della conoscenza moderna come base della sopravvivenza dell'umanità e della sopravvivenza dell'unione delle persone in uno stato in guerra. Questa prospettiva è fondamentale per riconoscere il potenziale dell'apprendimento automatico per affrontare sfide complesse e formare il futuro della scienza e della società. Il libro inizia con l'introduzione di concetti fondamentali per l'apprendimento automatico, tra cui l'apprendimento con l'insegnante e senza il maestro, le reti neurali e l'apprendimento profondo. Poi si approfondisce sulle basi matematiche di questi concetti, fornendo ai lettori una base solida per comprendere i temi più avanzati trattati successivamente nel libro.
Das Buch „Grundlegende mathematische Konzepte des maschinellen rnens in der Wissenschaft“ ist ein umfassender itfaden zum Verständnis der mathematischen Grundlagen des maschinellen rnens und seiner Anwendungen in verschiedenen wissenschaftlichen Bereichen. Der Autor, ein renommierter Experte auf diesem Gebiet, bietet eine detaillierte Erklärung der grundlegenden Prinzipien und Methoden, die die Entwicklung von maschinellen rnalgorithmen und deren Implementierung in realen Szenarien steuern. Das Buch deckt eine breite Palette von Themen ab, von linearer Algebra und Kalkül bis hin zu Wahrscheinlichkeitstheorie und statistischer Inferenz, die alle notwendig sind, um Konzepte des maschinellen rnens zu beherrschen. Der Autor betont die Bedeutung des Studiums und des Verständnisses des Prozesses der technologischen Evolution und betont die Notwendigkeit eines persönlichen Paradigmas für die Wahrnehmung des technologischen Prozesses der Entwicklung des modernen Wissens als Grundlage für das Überleben der Menschheit und das Überleben der Vereinigung der Menschen in einem kriegführenden Staat. Diese Perspektive ist entscheidend für die Anerkennung des Potenzials des maschinellen rnens bei der Lösung komplexer Probleme und der Gestaltung der Zukunft von Wissenschaft und Gesellschaft. Das Buch beginnt mit der Einführung grundlegender Konzepte des maschinellen rnens, einschließlich des rnens mit und ohne hrer, neuronaler Netzwerke und Deep arning. Es geht dann tiefer in die mathematischen Grundlagen dieser Konzepte ein und bietet den sern eine solide Grundlage, um fortgeschrittenere Themen zu verstehen, die später im Buch behandelt werden.
הספר Mathematical Concepts of Machine arning in Science הוא מדריך מקיף להבנת היסודות המתמטיים של למידת מכונה ויישומיה בתחומים מדעיים שונים. המחבר, מומחה ידוע בתחום, מספק הסבר מפורט לעקרונות ולשיטות היסוד השולטים בפיתוח אלגוריתמי למידת מכונה ויישומם בתרחישים של העולם האמיתי. הספר מכסה מגוון רחב של נושאים, החל באלגברה לינארית וחדו "א ועד לתורת ההסתברות והסקת מסקנות סטטיסטיות, כל אלה נחוצים למידת מושגי מכונה. המחבר מדגיש את חשיבות המחקר וההבנה של תהליך האבולוציה הטכנולוגית, ומדגיש את הצורך בפרדיגמה אישית לתפיסה של התהליך הטכנולוגי של התפתחות הידע המודרני כבסיס להישרדות האנושות ולהישרדות של איחוד בני האדם במצב לוחמני. נקודת מבט זו חיונית לזיהוי הפוטנציאל של למידת מכונה לפתרון בעיות מורכבות ולעצב את עתיד המדע והחברה. הספר מתחיל בכך שהוא מציג מושגים בסיסיים ללימוד מכונה, כולל למידה מפוקחת ובלתי מפוקחת, רשתות עצביות ולמידה עמוקה. לאחר מכן הוא מתעמק ביסודות המתמטיים של מושגים אלה, ומספק לקוראים בסיס מוצק להבנת הנושאים המתקדמים יותר המכוסים מאוחר יותר בספר.''
"Fundamental Mathematical Concepts of Machine arning in Science" kitabı, makine öğreniminin matematiksel temellerini ve çeşitli bilimsel alanlardaki uygulamalarını anlamak için kapsamlı bir kılavuzdur. Alanında tanınmış bir uzman olan yazar, makine öğrenimi algoritmalarının gelişimini ve gerçek dünya senaryolarında uygulanmasını yöneten temel ilke ve yöntemlerin ayrıntılı bir açıklamasını sağlar. Kitap, lineer cebir ve kalkülüsten olasılık teorisine ve istatistiksel çıkarıma kadar geniş bir konu yelpazesini kapsamaktadır ve bunların hepsi makine öğrenimi kavramlarına hakim olmak için gereklidir. Yazar, teknolojik evrim sürecini incelemenin ve anlamanın önemini vurgulayarak, modern bilginin gelişiminin teknolojik sürecinin algılanması için kişisel bir paradigmaya duyulan ihtiyacı vurgulayarak, insanlığın hayatta kalmasının ve savaşan bir durumda insanların birleşmesinin hayatta kalmasının temeli olarak vurgulamaktadır. Bu bakış açısı, makine öğreniminin karmaşık sorunları çözme ve bilim ve toplumun geleceğini şekillendirme potansiyelini tanımak için kritik öneme sahiptir. Kitap, denetlenen ve denetlenmeyen öğrenme, sinir ağları ve derin öğrenme dahil olmak üzere temel makine öğrenme kavramlarını tanıtarak başlıyor. Daha sonra, bu kavramların matematiksel temellerini inceleyerek, okuyuculara daha sonra kitapta ele alınan daha ileri konuları anlamak için sağlam bir temel sağlar.
كتاب «المفاهيم الرياضية الأساسية للتعلم الآلي في العلوم» هو دليل شامل لفهم الأسس الرياضية للتعلم الآلي وتطبيقاته في مختلف المجالات العلمية. يقدم المؤلف، وهو خبير معروف في هذا المجال، شرحًا مفصلاً للمبادئ والأساليب الأساسية التي تحكم تطوير خوارزميات التعلم الآلي وتنفيذها في سيناريوهات العالم الحقيقي. يغطي الكتاب مجموعة واسعة من الموضوعات، من الجبر الخطي والحساب إلى نظرية الاحتمالات والاستدلال الإحصائي، وكلها ضرورية لإتقان مفاهيم التعلم الآلي. ويشدد المؤلف على أهمية دراسة وفهم عملية التطور التكنولوجي، مشددا على الحاجة إلى نموذج شخصي لتصور العملية التكنولوجية لتطور المعرفة الحديثة كأساس لبقاء البشرية وبقاء توحيد الشعوب في حالة حرب. يعد هذا المنظور أمرًا بالغ الأهمية للتعرف على إمكانات التعلم الآلي لحل المشكلات المعقدة وتشكيل مستقبل العلم والمجتمع. يبدأ الكتاب بإدخال مفاهيم التعلم الآلي الأساسية، بما في ذلك التعلم الخاضع للإشراف وغير الخاضع للإشراف، والشبكات العصبية، والتعلم العميق. ثم يتعمق في الأسس الرياضية لهذه المفاهيم، مما يوفر للقراء أساسًا صلبًا لفهم الموضوعات الأكثر تقدمًا التي تمت تغطيتها لاحقًا في الكتاب.
「科學中機器學習的基本數學概念」一書為理解機器學習的數學基礎及其在各個科學領域的應用提供了全面的指南。作者是該領域的著名專家,詳細解釋了驅動機器學習算法開發及其在現實世界中的實現的基本原理和技術。該書涵蓋了廣泛的主題,從線性代數和微積分到概率論和統計推論,所有這些都是掌握機器學習概念所必需的。作者強調了研究和理解技術進化過程的重要性,強調了將現代知識的技術發展過程視為人類生存和人類在交戰國團結生存的基礎的個人範式的必要性。這種觀點對於認識到機器學習在解決復雜問題和塑造科學與社會未來方面的潛力至關重要。本書首先介紹了機器學習的基本概念,包括與老師和非老師一起學習,神經網絡和深度學習。然後,他深入研究了這些概念的數學基礎,為讀者提供了堅實的基礎來理解書中後來提出的更高級的主題。

You may also be interested in:

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow Concepts, Tools, and Techniques to Build Intelligent Systems Second Edition (Third Release)
Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow Concepts, Tools, and Techniques to Build Intelligent Systems Second Edition (Early Release)
Ultimate Step by Step Guide to Deep Learning Using Python Artificial Intelligence and Neural Network Concepts Explained in Simple Terms (Ultimate Step by Step Guide to Machine Learning Book 2)
Building Machine Learning Systems Using Python Practice to Train Predictive Models and Analyze Machine Learning Results
Machine Learning for Beginners An Introductory Guide to Learn and Understand Artificial Intelligence, Neural Networks and Machine Learning
Machine Learning for Business The Ultimate Artificial Intelligence & Machine Learning for Managers, Team Leaders and Entrepreneurs
Machine Learning in Production: Master the art of delivering robust Machine Learning solutions with MLOps (English Edition)
Applied Machine Learning and High-Performance Computing on AWS: Accelerate the development of machine learning applications following architectural best practices
Serverless Machine Learning with Amazon Redshift ML: Create, train, and deploy machine learning models using familiar SQL commands
Machine Learning for Data Streams with Practical Examples in MOA (Adaptive Computation and Machine Learning series)
Machine Learning Master Machine Learning Fundamentals for Beginners, Business Leaders and Aspiring Data Scientists
Online Machine Learning: A Practical Guide with Examples in Python (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Machine Learning for Beginners Build and deploy Machine Learning systems using Python, 2nd Edition
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning with Core ML 2 and Swift A beginner-friendly guide to integrating machine learning into your apps
Robust Machine Learning: Distributed Methods for Safe AI (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python
Ultimate Step by Step Guide to Machine Learning Using Python Predictive modelling concepts explained in simple terms for beginners
Programming With Python 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis
Pragmatic Machine Learning with Python Learn How to Deploy Machine Learning Models in Production
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning
Machine Learning, Animated (Chapman and Hall CRC Machine Learning and Pattern Recognition)
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning
Machine Learning for Absolute Beginners An Absolute beginner’s guide to learning and understanding machine learning successfully
Machine Learning with Python The Ultimate Guide to Learn Machine Learning Algorithms. Includes a Useful Section about Analysis, Data Mining and Artificial Intelligence in Business Applications
Machine Learning Tutorial: Machine Learning Simply Easy Learning
Machine Learning The Ultimate Guide to Understand Artificial Intelligence and Big Data Analytics. Learn the Building Block Algorithms and the Machine Learning’s Application in the Modern Life
Machine Learning Production Systems Engineering Machine Learning Models and Pipelines
Statistics for Machine Learning Implement Statistical methods used in Machine Learning using Python
Machine Learning Interviews Kickstart Your Machine Learning and Data Career (Final)
Machine Learning An In-Depth Beginners Guide into the Essentials of Machine Learning Algorithms
Cloud Computing for Machine Learning and Cognitive Applications A Machine Learning Approach
Probabilistic Machine Learning: An Introduction (Adaptive Computation and Machine Learning series)
Introduction to Machine Learning (Adaptive Computation and Machine Learning), 4th Edition
Python Machine Learning A Complete Guide for Beginners on Machine Learning and Deep Learning with Python
Python Machine Learning Machine Learning and Deep Learning with Python, scikit-learn and Tensorflow
Machine Learning Interviews: Kickstart Your Machine Learning and Data Career