BOOKS - Federated Learning Principles, Paradigms, and Applications
Federated Learning Principles, Paradigms, and Applications - Jayakrushna Sahoo, Mariya Ouaissa, Akarsh K. Nair 2025 PDF Apple Academic Press, CRC Press BOOKS
ECO~15 kg CO²

1 TON

Views
99870

Telegram
 
Federated Learning Principles, Paradigms, and Applications
Author: Jayakrushna Sahoo, Mariya Ouaissa, Akarsh K. Nair
Year: 2025
Pages: 353
Format: PDF
File size: 17.4 MB
Language: ENG



Pay with Telegram STARS
Federated learning principles paradigms and applications The book "Federated Learning Principles Paradigms and Applications" is a comprehensive guide to understanding the principles and practices of federated learning, a decentralized approach to machine learning that is gaining popularity due to its potential to address privacy and data security concerns while still achieving high levels of model accuracy. The book covers the fundamental concepts of federated learning, including the principles and paradigms that govern this field, as well as practical applications in various industries such as healthcare, finance, and education. The book begins by introducing the reader to the concept of federated learning and its importance in today's technology landscape. It explains how traditional centralized machine learning approaches can be vulnerable to data breaches and other security risks, and how federated learning offers a more secure and private alternative. The authors then delve into the key principles of federated learning, including data decentralization, communication efficiency, and privacy protection, providing readers with a solid foundation for understanding the rest of the book. Next, the book explores the different paradigms of federated learning, including horizontal federated learning, vertical federated learning, and multi-task federated learning.
Парадигмы и приложения принципов федеративного обучения Книга «Парадигмы и приложения принципов федеративного обучения» представляет собой всеобъемлющее руководство по пониманию принципов и практики федеративного обучения, децентрализованного подхода к машинному обучению, который набирает популярность благодаря своему потенциалу для решения проблем конфиденциальности и безопасности данных при одновременном достижении высокого уровня точности модели. Книга охватывает фундаментальные концепции федеративного обучения, включая принципы и парадигмы, регулирующие эту область, а также практические применения в различных отраслях, таких как здравоохранение, финансы и образование. Книга начинается с знакомства читателя с концепцией федеративного обучения и ее важностью в современном технологическом ландшафте. В нем объясняется, как традиционные подходы к централизованному машинному обучению могут быть уязвимы к утечкам данных и другим рискам безопасности, и как объединенное обучение предлагает более безопасную и частную альтернативу. Затем авторы углубляются в ключевые принципы федеративного обучения, включая децентрализацию данных, эффективность коммуникации и защиту конфиденциальности, предоставляя читателям прочную основу для понимания остальной части книги. Далее в книге рассматриваются различные парадигмы федеративного обучения, включая горизонтальное федеративное обучение, вертикальное федеративное обучение и многозадачное федеративное обучение.
''

You may also be interested in:

Fog Computing for Intelligent Cloud IoT Systems (Advances in Learning Analytics for Intelligent Cloud-IoT Systems)
Random Motions in Markov and Semi-Markov Random Environments 1: Homogeneous Random Motions and Their Applications
Towards Heterogeneous Multi-core Systems-on-Chip for Edge Machine Learning Journey from Single-core Acceleration to Multi-core Heterogeneous Systems
Towards Heterogeneous Multi-core Systems-on-Chip for Edge Machine Learning Journey from Single-core Acceleration to Multi-core Heterogeneous Systems
Knots Technique Guide Learning Knots Technique Through These Simple Tutorials Knots Guide Book
Python For Data Science The Ultimate Beginners’ Guide to Learning Python Data Science Step by Step
Easy Learning Data Structures & Algorithms Python 3 Data Structures and Algorithms Guide in Python
Optimization Methods for Structural Engineering (Engineering Optimization: Methods and Applications)
Phytotherapie Pour Une Guerison Acceleree: 25 Applications D|herbes Medicinales Pour Une Guerison Naturelle (Phytotherapie et plantes medicinales)
Advances in Special Functions of Fractional Calculus: Special Functions in Fractional Calculus and Their Applications in Engineering
Inverse and Ill-posed Problems: Theory and Applications (Inverse and Ill-Posed Problems Series, 55)
Data Analytics and AI (Data Analytics Applications)
Learn Advanced css quickly for Beginners: This book is designed for learning advanced css, and added live coding examples, so that beginners can learn css quickly.
Easy Learning Data Structures & Algorithms C++ Graphic Data Structures & Algorithms
Applications of Nonverbal Communication (Claremont Symposium on Applied Social Psychology) (Claremont Symposium on Applied Social Psychology Series)
Learning Robotics, with Robotics, by Robotics Educational Robotics
Machine Vision Inspection Systems Machine Learning-Based Approaches (Machine Vision Inspection Systems, Volume 2)
How to Repair iPhone Screen & Unlock iPhones Learning how to repair cracked iPhone screen, unlock iPhones, upgrade iPhones iOS version & backup iPhones made easy (Pictures inclusive)
javascript Optimizing Native javascript Designing, Programming, and Debugging Native javascript Applications
Anatomy and Physiology: Anatomy and Physiology Made Easy: A Concise Learning Guide to Master the Fundamentals (Anatomy and Physiology, Human Anatomy, Human Physiology, Human Anatomy and Physiology)
You Can Draw Comic Book Characters A step-by-step guide for learning to draw more than 25 comic book characters
You Can Draw Comic Book Characters A step-by-step guide for learning to draw more than 25 comic book characters
Machine Learning Upgrade: A Data Scientist|s Guide to MLOps, LLMs, and ML Infrastructure: A Data Scientist|s Guide to MLOps, LLMs, and ML Infrastructure
Easy Learning Data Structures & Algorithms javascript Classic data structures and algorithms in javascript
Easy Learning Data Structures & Algorithms ES6+javascript Classic data structures and algorithms in ES6+ javascript