BOOKS - Humanities Data in R Exploring Networks, Geospatial Data, Images, and Text, 2...
Humanities Data in R Exploring Networks, Geospatial Data, Images, and Text, 2nd Edition - Taylor Arnold, Lauren Tilton 2024 PDF | EPUB Springer BOOKS
ECO~14 kg CO²

1 TON

Views
52611

Telegram
 
Humanities Data in R Exploring Networks, Geospatial Data, Images, and Text, 2nd Edition
Author: Taylor Arnold, Lauren Tilton
Year: 2024
Pages: 287
Format: PDF | EPUB
File size: 50.7 MB
Language: ENG



Pay with Telegram STARS
J. Patrick Meyer. Humanities Data in R Exploring Networks Geospatial Data Images and Text 2nd Edition by Dr. J. Patrick Meyer is a comprehensive guide to using R programming language to analyze and visualize humanities data. The book covers a wide range of topics, from data cleaning and preprocessing to network analysis and visualization, and provides practical examples and exercises to help readers apply these techniques to their own research projects. The book begins by introducing the concept of data in the humanities, and how it differs from traditional scientific data. It discusses the importance of understanding the context and meaning of humanities data, and how to approach its analysis and interpretation. The author then delves into the technical aspects of working with humanities data in R, including data cleaning, transformation, and visualization. One of the key themes of the book is the use of networks to represent and analyze humanities data. The author explains how networks can be used to model relationships between people, places, and objects, and how they can be visualized using R's built-in functions and packages. The book also covers geospatial data, which refers to data that is associated with a particular location or region. This includes data on climate, demographics, and other environmental factors, and the author shows how to work with this type of data in R. The book also explores the use of images as a form of humanities data, and how they can be analyzed and visualized using R. Topics such as image processing, feature extraction, and object recognition are covered, along with practical examples of how these techniques can be applied to real-world problems.
J. Patrick Meyer. Humanities Data in R Exploring Networks Geospatial Data Images and Text 2nd Edition by Dr. J. Patrick Meyer - всеобъемлющее руководство по использованию языка программирования R для анализа и визуализации гуманитарных данных. Книга охватывает широкий спектр тем, от очистки и предварительной обработки данных до анализа и визуализации сети, и содержит практические примеры и упражнения, которые помогут читателям применить эти методы в своих собственных исследовательских проектах. Книга начинается с введения понятия данных в гуманитарных науках, и чем они отличаются от традиционных научных данных. В нем обсуждается важность понимания контекста и значения гуманитарных данных, а также того, как подходить к их анализу и интерпретации. Затем автор углубляется в технические аспекты работы с гуманитарными данными в R, включая очистку, преобразование и визуализацию данных. Одной из ключевых тем книги является использование сетей для представления и анализа гуманитарных данных. Автор объясняет, как можно использовать сети для моделирования отношений между людьми, местами и объектами, и как их можно визуализировать с помощью встроенных функций и пакетов R. Книга также охватывает геопространственные данные, которые относятся к данным, связанным с определенным местоположением или областью. Сюда входят данные о климате, демографии и других факторах окружающей среды, и автор показывает, как работать с этим типом данных в R. Книга также исследует использование изображений как формы гуманитарных данных, и как они могут быть проанализированы и визуализированы с использованием R. Темы, такие как обработка изображений, рассматриваются извлечение признаков и распознавание объектов, а также практические примеры того, как эти методы могут быть применены к реальным проблемам.
''

You may also be interested in:

Digital Humanities and Christianity: An Introduction (Introductions to Digital Humanities - Religion)
Python for Everybody Exploring Data in Python 3 (2023 Update)
Python for Everybody Exploring Data in Python 3 (2023 Update)
Neural Networks and Deep Learning Neural Networks & Deep Learning, Deep Learning, Big Data
End-to-End Quality of Service over Cellular Networks Data Services Performance Optimization in 2G/3G
Cloud Computing Enabled Big-Data Analytics in Wireless Ad-hoc Networks (Wireless Communications and Networking Technologies)
Data Analytics Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Data Analytics: Practical Guide to Leveraging the Power of Algorithms, Data Science, Data Mining, Statistics, Big Data, and Predictive Analysis to Improve Business, Work, and Life
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Advanced Data Analytics with AWS: Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources (English Edition)
The Data Revolution Big Data, Open Data, Data Infrastructures and Their Consequences
Intelligent Communication Technologies and Virtual Mobile Networks: Proceedings of ICICV 2023 (Lecture Notes on Data Engineering and Communications Technologies Book 171)
Python for Everybody Exploring Data in Python 3
Modern Data Architectures with Python: A practical guide to building and deploying data pipelines, data warehouses, and data lakes with Python
Data Modeling Made Simple with Embarcadero ER/Studio Data Architect Adapting to Agile Data Modeling in a Big Data World
Computational Data and Social Networks: 9th International Conference, CSoNet 2020, Dallas, TX, USA, December 11-13, 2020, Proceedings (Lecture Notes in Computer Science, 12575)
Machine Learning for Beginners A Math Guide to Mastering Deep Learning and Business Application. Understand How Artificial Intelligence, Data Science, and Neural Networks Work Through Real Examples
Intelligent Data Analysis From Data Gathering to Data Comprehension (The Wiley Series in Intelligent Signal and Data Processing)
Unmanned Aerial Vehicle Applications over Cellular Networks for 5G and Beyond (Wireless Networks)
Zero Trust Networks Building Secure Systems in Untrusted Networks, 2nd Edition (Final)
Zero Trust Networks Building Secure Systems in Untrusted Networks, 2nd Edition (Final)
Communication Networks, Vol. II - The Classical Theory of Long Lines, Filters and Related Networks
Neural Networks with Python Design CNNs, Transformers, GANs and capsule networks using Tensorflow and Keras
Learning-Based Reconfigurable Multiple Access Schemes for Virtualized MTC Networks (Wireless Networks)
Neural Networks with Python Design CNNs, Transformers, GANs and capsule networks using Tensorflow and Keras
Implementing Data Mesh Design, Build, and Implement Data Contracts, Data Products, and Data Mesh
Implementing Data Mesh Design, Build, and Implement Data Contracts, Data Products, and Data Mesh
Digital Humanities and Material Religion: An Introduction (Introductions to Digital Humanities - Religion)
From Logistic Networks to Social Networks: Similarities, Specificities, Modeling, Evaluation (Systems and Industrial Engineering Series)
Air Route Networks Through Complex Networks Theory
Intelligent Internet of Things Networks (Wireless Networks)
Data Science from Scratch Want to become a Data Scientist? This guide for beginners will walk you through the world of Data Science, Big Data, Machine Learning and Deep Learning
Python Programming, Deep Learning 3 Books in 1 A Complete Guide for Beginners, Python Coding for AI, Neural Networks, & Machine Learning, Data Science/Analysis with Practical Exercises for Learners
The Big User-Friendly Cyber Security Gaint - Palo Alto Networks An Ultimate Guide To Secure Your Cloud And On-Premise Networks
Data Science With Rust A Comprehensive Guide - Data Analysis, Machine Learning, Data Visualization & More
Getting Started with DuckDB: A practical guide for accelerating your data science, data analytics, and data engineering workflows
Data Science With Rust A Comprehensive Guide - Data Analysis, Machine Learning, Data Visualization & More
Data Science With Rust: A Comprehensive Guide - Data Analysis, Machine Learning, Data Visualization and More
Hands-On Data Preprocessing in Python: Learn how to effectively prepare data for successful data analytics