BOOKS - Deep Learning for Video Understanding
Deep Learning for Video Understanding - Zuxuan Wu, Yu-Gang Jiang 2024 PDF | EPUB Springer BOOKS
ECO~12 kg CO²

1 TON

Views
30902

Telegram
 
Deep Learning for Video Understanding
Author: Zuxuan Wu, Yu-Gang Jiang
Year: 2024
Pages: 194
Format: PDF | EPUB
File size: 42.2 MB
Language: ENG



Pay with Telegram STARS
Deep Learning for Video Understanding Introduction The rapid development of deep learning techniques has revolutionized video understanding tasks such as object detection, segmentation, tracking, and recognition. This book provides a comprehensive overview of the current state-of-the-art methods for video understanding using deep learning techniques. It covers various applications of deep learning in computer vision, including image classification, object detection, semantic segmentation, instance segmentation, and video generation. The book also discusses the challenges and limitations of deep learning models in video understanding tasks and future research directions. Chapter 1: Introduction to Deep Learning * Overview of deep learning techniques and their applications in computer vision * Importance of deep learning in video understanding tasks * Brief history of deep learning and its evolution Chapter 2: Image Classification * Overview of image classification tasks and their importance in video understanding * Traditional methods for image classification (e. g. , SVM, k-NN) * Deep learning methods for image classification (e. g. , Convolutional Neural Networks, Recurrent Neural Networks) * Applications of image classification in video understanding (e. g. , object detection, scene understanding) Chapter 3: Object Detection * Overview of object detection tasks and their importance in video understanding * Traditional methods for object detection (e. g. , sliding window, HOG+SVM) * Deep learning methods for object detection (e. g. , YOLO, SSD, Faster R-CNN) * Applications of object detection in video understanding (e. g.
Глубокое обучение для понимания видео Введение Быстрая разработка методов глубокого обучения произвела революцию в таких задачах понимания видео, как обнаружение объектов, сегментация, отслеживание и распознавание. В этой книге представлен всесторонний обзор современных современных методов понимания видео с использованием методов глубокого обучения. Он охватывает различные приложения глубокого обучения в компьютерном зрении, включая классификацию изображений, обнаружение объектов, семантическую сегментацию, сегментацию экземпляров и генерацию видео. В книге также обсуждаются проблемы и ограничения моделей глубокого обучения в задачах понимания видео и будущих направлениях исследований. Глава 1: Введение в глубокое обучение * Обзор методов глубокого обучения и их применения в компьютерном зрении * Важность глубокого обучения в задачах понимания видео * Краткая история глубокого обучения и его развитие Глава 2: Классификация изображений * Обзор задач классификации изображений и их важность в понимании видео * Традиционные методы классификации изображений (например, SVM, k-NN) * Методы глубокого обучения для классификации изображений (например, сверточные нейронные сети, рекуррентные нейронные сети) * Применение классификации изображений в понимании видео (например, обнаружение объектов, понимание сцены) Глава 3: Обнаружение объектов * Обзор задач обнаружения объектов и их важность в понимании видео * Традиционные методы обнаружения объектов (например, скользящее окно, HOG + SVM) * Методы глубокого обучения для обнаружения объектов (например, YOLO, SSD, Faster R-CNN) * Приложения обнаружения объектов в понимании видео (например,
''

You may also be interested in:

Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning, 2nd Edition (Final Release)
Data Scientist Pocket Guide Over 600 Concepts, Terminologies, and Processes of Machine Learning and Deep Learning Assembled
Machine Learning with Python Cookbook Practical Solutions from Preprocessing to Deep Learning, 2nd Edition (Final Release)
Programming Machine Learning From Coding to Deep Learning
Learning Deep Learning Theory and Practice of Neural Networks, Computer Vision, NLP, and Transformers using TensorFlow (Rough Cuts)
Data Science Crash Course Thyroid Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI, Second Edition
Deep Learning and XAI Techniques for Anomaly Detection: Integrate the theory and practice of deep anomaly explainability
Machine Learning for Absolute Beginners An Absolute beginner’s guide to learning and understanding machine learning successfully
Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis
Programming With Python 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Machine Learning for Beginners A Math Guide to Mastering Deep Learning and Business Application. Understand How Artificial Intelligence, Data Science, and Neural Networks Work Through Real Examples
Machine Learning for Beginners A Practical Guide to Understanding and Applying Machine Learning Concepts
Teaching for Deep Understanding: What Every Educator Should Know
Learn AI with Python Explore Machine Learning and Deep Learning techniques for Building Smart AI Systems Using Scikit-Learn
Quantum AI Machine Learning and Deep Learning for Everyone A Beginners Guide to Unlocking Business Opportunities by Leveraging the power of AI in Quantum Age
Artificial Intelligence For Business How Your Company Can Make More Profit with Machine Learning, Data Science, Big Data, and Deep Learning
Quantum AI Machine Learning and Deep Learning for Everyone A Beginners Guide to Unlocking Business Opportunities by Leveraging the power of AI in Quantum Age
Learning PyTorch 2.0, Second Edition Utilize PyTorch 2.3 and CUDA 12 to experiment neural networks and Deep Learning models
Learning PyTorch 2.0, Second Edition Utilize PyTorch 2.3 and CUDA 12 to experiment neural networks and Deep Learning models
Learning PyTorch 2.0: Experiment deep learning from basics to complex models using every potential capability of Pythonic PyTorch
Learning PyTorch 2.0 Experiment Deep Learning from basics to complex models using every potential capability of Pythonic PyTorch
Learning PyTorch 2.0 Experiment Deep Learning from basics to complex models using every potential capability of Pythonic PyTorch
From Machine Learning To Deep Learning
Deep Learning with C#, .Net and Kelp.Net The Ultimate Kelp.Net Deep Learning Guide
Learn AI with Python: Explore Machine Learning and Deep Learning techniques for Building Smart AI Systems Using Scikit-Learn, NLTK, NeuroLab, and Keras
Scikit-learn in Details Deep understanding
Learn Autonomous Programming with Python Utilize Python|s capabilities in Artificial Intelligence, Machine Learning, Deep Learning and robotic process automation
Learn Autonomous Programming with Python Utilize Python|s capabilities in Artificial Intelligence, Machine Learning, Deep Learning and robotic process automation
Python Programming The Crash Course for Python – Learn the Secrets of Machine Learning, Data Science Analysis and Artificial Intelligence. Introduction to Deep Learning for Beginners
Deep Learning and AI Superhero Mastering TensorFlow, Keras, and PyTorch Advanced Machine Learning and AI, Neural Networks, and Real-World Projects (Mastering the AI Revolution)
Machine Learning and Deep Learning in Computational Toxicology (Computational Methods in Engineering and the Sciences)
Grokking Algorithms Simple and Effective Methods to Grokking Deep Learning and Machine Learning
Python Machine Learning A Complete Guide for Beginners on Machine Learning and Deep Learning with Python
Python Machine Learning Machine Learning and Deep Learning with Python, scikit-learn and Tensorflow
Python Programming The Crash Course for Python Projects – Learn the Secrets of Machine Learning, Data Science Analysis and Artificial Intelligence. Introduction to Deep Learning for Beginners
Learn Autonomous Programming with Python: Utilize Python|s capabilities in artificial intelligence, machine learning, deep learning and robotic process automation (English Edition)
Python Programming, Deep Learning 3 Books in 1 A Complete Guide for Beginners, Python Coding for AI, Neural Networks, & Machine Learning, Data Science/Analysis with Practical Exercises for Learners
Learning VirtualDub The Complete Guide to Capturing, Processing and Encoding Digital Video
Introduction to Python With Applications in Optimization, Image and Video Processing, and Machine Learning
Introduction to Python With Applications in Optimization, Image and Video Processing, and Machine Learning