BOOKS - Machine Learning with Python
Machine Learning with Python - Tarkeshwar Barua, Kamal Kant Hiran, Ritesh Kumar Jain, Ruchi Doshi 2024 PDF De Gruyter BOOKS
ECO~18 kg CO²

1 TON

Views
7166

Telegram
 
Machine Learning with Python
Author: Tarkeshwar Barua, Kamal Kant Hiran, Ritesh Kumar Jain, Ruchi Doshi
Year: 2024
Pages: 486
Format: PDF
File size: 40.4 MB
Language: ENG



Pay with Telegram STARS
The book "Machine Learning with Python" is a comprehensive guide to machine learning using the Python programming language. The book covers the fundamental concepts of machine learning, including supervised and unsupervised learning, neural networks, and deep learning, and provides practical examples and exercises to help readers understand and apply these concepts. The book also discusses the importance of data preprocessing, feature selection, and model evaluation, and provides tips for improving the performance of machine learning models. The book begins by introducing the concept of machine learning and its applications in various fields, such as image and speech recognition, natural language processing, and predictive analytics. It then delves into the basics of machine learning, including linear regression, logistic regression, decision trees, random forests, support vector machines, and clustering algorithms. The book also covers more advanced topics such as neural networks, deep learning, and reinforcement learning. Throughout the book, the author emphasizes the importance of understanding the underlying principles of machine learning and how they can be applied to real-world problems. The book includes numerous examples and exercises to help readers practice and reinforce their understanding of the concepts covered. Additionally, the book provides tips and tricks for improving the performance of machine learning models and avoiding common pitfalls. One of the unique aspects of this book is its focus on the Python programming language, which is widely used in industry and academia for machine learning tasks. The book provides a detailed introduction to the Python ecosystem, including popular libraries such as NumPy, SciPy, and scikit-learn, and shows how to use these libraries to implement machine learning algorithms. The book concludes with a discussion on the future of machine learning and its potential impact on society.
Книга «Машинное обучение с Python» представляет собой исчерпывающее руководство по машинному обучению с использованием языка программирования Python. Книга охватывает фундаментальные концепции машинного обучения, включая обучение с учителем и без учителя, нейронные сети и глубокое обучение, и содержит практические примеры и упражнения, чтобы помочь читателям понять и применить эти концепции. В книге также обсуждается важность предварительной обработки данных, выбора признаков и оценки моделей, а также даются советы по повышению производительности моделей машинного обучения. Книга начинается с введения концепции машинного обучения и его приложений в различных областях, таких как распознавание изображений и речи, обработка естественного языка и предиктивная аналитика. Затем он углубляется в основы машинного обучения, включая линейную регрессию, логистическую регрессию, деревья решений, случайные леса, машины опорных векторов и алгоритмы кластеризации. Книга также охватывает более продвинутые темы, такие как нейронные сети, глубокое обучение и обучение с подкреплением. На протяжении всей книги автор подчеркивает важность понимания основополагающих принципов машинного обучения и того, как их можно применить к реальным проблемам. Книга включает в себя многочисленные примеры и упражнения, чтобы помочь читателям практиковаться и укреплять их понимание затронутых концепций. Кроме того, книга содержит советы и рекомендации по улучшению производительности моделей машинного обучения и избежанию распространенных подводных камней. Одним из уникальных аспектов этой книги является её ориентация на язык программирования Python, который широко используется в промышленности и научных кругах для задач машинного обучения. Книга содержит подробное введение в экосистему Python, включая популярные библиотеки, такие как NumPy, SciPy и scikit-learn, и показывает, как использовать эти библиотеки для реализации алгоритмов машинного обучения. Завершает книгу дискуссия о будущем машинного обучения и его потенциальном влиянии на общество.
''

You may also be interested in:

Data Science Crash Course Thyroid Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI, Second Edition
Python Programming The Complete Guide to Learn Python for Data Science, AI, Machine Learning, GUI and More With Practical Exercises and Interview Questions
Mastering ChatGPT and Google Colab for Machine Learning Automate AI Workflows and Fast-Track Your Machine Learning Tasks with the Power of ChatGPT, Google Colab, and Python
Python Highway 2 Books in 1 The Fastest Way for Beginners to Learn Python Programming, Data Science and Machine Learning in 3 Days (or less) + Practical Exercises Included
Machine Learning with Python The Ultimate Guide for Absolute Beginners with Steps to Implement Artificial Neural Networks with Real Examples (Useful Python Tools eg. Anaconda, Jupiter Notebook)
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Python Machine Learning A Step-by-Step Guide to Scikit-Learn and TensorFlow (Includes a Python Programming Crash Course)
Python Programming A complete beginners guide on python machine learning, data science and tools (Computer Programming Book 1)
Machine Learning with Python
Python Machine Learning
Python Machine Learning By Example
Python Machine Learning
Machine Learning With Python
Machine Learning in Python for Everyone
Machine Learning with Python
Machine Learning Using Python
Machine Learning in Python for Everyone
Machine Learning with Python
Machine Learning in Python
Machine Learning in Python for Everyone
Machine Learning with Python
Python Programming Advanced Applications and Features Object-Oriented Programming, Data Analysis, Artificial Intelligence and Machine Learning with Python
PYTHON PROGRAMMING 2 book in 1 A complete guide from beginner to intermediate on python machine learning, data science, tools (Computer Programming 5)
Python - 2 Books in 1 Python and Machine Learning for Beginners The Ultimate Guide from Beginners to Expert Concepts
Learn AI with Python Explore Machine Learning and Deep Learning techniques for Building Smart AI Systems Using Scikit-Learn
Machine Learning With Python 3 books in 1 Hands-On Learning for Beginners+An in-Depth Guide Beyond the Basics+A Practical Guide for Experts
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Active Machine Learning with Python: Refine and elevate data quality over quantity with active learning
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Learn Python Programming A Beginners Crash Course on Python Language for Getting Started with Machine Learning, Data Science and Data Analytics (Artificial Intelligence Book 1)
Learn OpenCV with Python by Examples: Implement Computer Vision Algorithms Provided by OpenCV with Python for Image Processing, Object Detection and Machine Learning
Coding with Python Python for Data Analysis and Machine Learning, Let’s Make Data Talk
Learn AI with Python: Explore Machine Learning and Deep Learning techniques for Building Smart AI Systems Using Scikit-Learn, NLTK, NeuroLab, and Keras
Machine Learning Mathematics in Python
Machine Learning With Python Programming
Unsupervised Machine Learning with Python
Python Machine Learning Projects
Unsupervised Machine Learning with Python
Machine Learning in Python for Process