BOOKS - Data Engineering for Machine Learning Pipelines From Python Libraries to ML P...
Data Engineering for Machine Learning Pipelines From Python Libraries to ML Pipelines and Cloud Platforms - Pavan Kumar Narayanan 2024 PDF Apress BOOKS
ECO~23 kg CO²

2 TON

Views
32448

Telegram
 
Data Engineering for Machine Learning Pipelines From Python Libraries to ML Pipelines and Cloud Platforms
Author: Pavan Kumar Narayanan
Year: 2024
Pages: 631
Format: PDF
File size: 33.0 MB
Language: ENG



Pay with Telegram STARS
Book Description: The book "Data Engineering for Machine Learning Pipelines From Python Libraries to ML Pipelines and Cloud Platforms" provides a comprehensive overview of the field of data engineering, from the basics of Python libraries to the latest advancements in cloud platforms. The book covers the entire spectrum of data engineering, from data ingestion and storage to data processing and analysis, and finally to machine learning pipelines. It offers practical guidance on how to build scalable and reliable data pipelines using Python libraries such as NumPy, pandas, and scikit-learn, as well as popular cloud platforms like AWS, GCP, and Azure. The book also explores the challenges of working with large datasets and the importance of data quality, data governance, and data security. The book begins by introducing the concept of data engineering and its role in the broader field of artificial intelligence (AI) and machine learning (ML). It explains how data engineering has evolved over time, from simple data storage solutions to complex data pipelines that power modern AI/ML applications. The authors highlight the need for a personal paradigm for perceiving the technological process of developing modern knowledge, emphasizing the importance of understanding the evolution of technology and its impact on society. They argue that this understanding is crucial for survival in today's rapidly changing world. The book then delves into the details of data ingestion, explaining how data can be extracted from various sources, such as databases, APIs, and files.
В книге «Data Engineering for Machine arning Pipelines From Python Libraries to ML Pipelines and Cloud Platforms» представлен всесторонний обзор области инженерии данных, от основ библиотек Python до последних достижений в области облачных платформ. Книга охватывает весь спектр инженерии данных, от приема и хранения данных до обработки и анализа данных и, наконец, до конвейеров машинного обучения. Он предлагает практическое руководство по созданию масштабируемых и надежных конвейеров данных с использованием библиотек Python, таких как NumPy, pandas и scikit-learn, а также популярных облачных платформ, таких как AWS, GCP и Azure. В книге также рассматриваются проблемы работы с большими наборами данных и важность качества данных, управления данными и безопасности данных. Книга начинается с введения концепции инженерии данных и её роли в более широкой области искусственного интеллекта (ИИ) и машинного обучения (ML). Он объясняет, как инженерия данных развивалась с течением времени, от простых решений для хранения данных до сложных конвейеров данных, которые обеспечивают работу современных приложений AI/ML. Авторы подчеркивают необходимость личностной парадигмы восприятия технологического процесса развития современных знаний, подчеркивая важность понимания эволюции технологий и ее влияния на общество. Они утверждают, что это понимание имеет решающее значение для выживания в современном быстро меняющемся мире. Затем книга углубляется в детали приема данных, объясняя, как данные могут быть извлечены из различных источников, таких как базы данных, API и файлы.
Il libro Data Engineering for Machine arning Pipelines From Python Libraries to ML Pipelines and Cloud Platforms fornisce una panoramica completa dell'ingegneria dei dati, dai fondamentali delle librerie Python agli ultimi progressi nelle piattaforme cloud. Il libro comprende tutta la gamma dell'ingegneria dei dati, dall'acquisizione e conservazione ai dati, fino all'elaborazione e all'analisi dei dati, fino alla catena di montaggio dell'apprendimento automatico. Offre un manuale pratico per la creazione di sistemi di spedizione scalabili e affidabili con librerie Python, come NumPy, pandas e scikit-learn, e piattaforme cloud popolari come AWS, GCP e Azure. Il libro affronta anche le problematiche relative ai dataset di grandi dimensioni e l'importanza della qualità dei dati, della gestione dei dati e della sicurezza dei dati. Il libro inizia introducendo il concetto di ingegneria dei dati e il suo ruolo nel campo più ampio dell'intelligenza artificiale (IA) e dell'apprendimento automatico (ML). Spiega come l'ingegneria dei dati si sia evoluta nel corso del tempo, dalle semplici soluzioni di storage alle complesse reti di montaggio dei dati che garantiscono il funzionamento delle attuali applicazioni AI/ML. Gli autori sottolineano la necessità di un paradigma personale della percezione del processo tecnologico dello sviluppo della conoscenza moderna, sottolineando l'importanza di comprendere l'evoluzione della tecnologia e il suo impatto sulla società. Sostengono che questa comprensione sia fondamentale per la sopravvivenza in un mondo in rapido cambiamento. Il libro viene quindi approfondito nelle parti di ricezione dei dati, spiegando come i dati possono essere recuperati da diverse origini, quali database, API e file.
''

You may also be interested in:

Beginning Mathematica and Wolfram for Data Science: Applications in Data Analysis, Machine Learning, and Neural Networks
Statistical and Machine-Learning Data Mining Techniques for Better Predictive Modeling and Analysis of Big Data, Third Edition
Hands-On Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from Unlabeled Data
Machine Learning and Deep Learning in Neuroimaging Data Analysis
Machine Learning and Deep Learning in Neuroimaging Data Analysis
Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats
Mastering Data Engineering and Analytics with Databricks A Hands-on Guide to Build Scalable Pipelines Using Databricks, Delta Lake, and MLflow
Mastering Data Engineering and Analytics with Databricks A Hands-on Guide to Build Scalable Pipelines Using Databricks, Delta Lake, and MLflow
Statistics, Data Mining and Machine Learning in Astronomy A Practical Python Guide for the Analysis of Survey Data, Updated Ed
Python Data Science The Ultimate Crash Course, Tips, and Tricks to Learn Data Analytics, Machine Learning, and Their Application
Data Scientist Pocket Guide Over 600 Concepts, Terminologies, and Processes of Machine Learning and Deep Learning Assembled
Big data A Guide to Big Data Trends, Artificial Intelligence, Machine Learning, Predictive Analytics, Internet of Things, Data Science, Data Analytics, Business Intelligence, and Data Mining
Data Science Crash Course Thyroid Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI, Second Edition
Machine Learning: Fundamental Algorithms for Supervised and Unsupervised Learning With Real-World Applications (Advanced Data Analytics Book 1)
Python for Beginners Start Right Now to Learn Computer Programming with the Best Crash Course. Improve your Skills with Machine Learning, Data Analysis and Data Science
Modern Data Architectures with Python: A practical guide to building and deploying data pipelines, data warehouses, and data lakes with Python
Data Labeling in Machine Learning with Python: Explore modern ways to prepare labeled data for training and fine-tuning ML and generative AI models
Python Data Science The Complete Guide to Data Analytics + Machine Learning + Big Data Science + Pandas Python. The Easy Way to Programming (Exercises Included)
Python for Data Analysis From the Beginner to Expert Crash Course 3.0 that will Change your Life as a Digital Programmer Thanks to the Minimalism of this Manual. Deep Machine Learning and Big Data
Ultimate Parallel and Distributed Computing with Julia For Data Science Excel in Data Analysis, Statistical Modeling and Machine Learning by Leveraging MLBase.jl and MLJ.jl to Optimize Workflows
Ultimate Parallel and Distributed Computing with Julia For Data Science Excel in Data Analysis, Statistical Modeling and Machine Learning by Leveraging MLBase.jl and MLJ.jl to Optimize Workflows
Machine Learning Engineering (MEAP)
Machine Learning Engineering in Action
Machine Learning and Optimization for Engineering Design (Engineering Optimization: Methods and Applications)
Ultimate Parallel and Distributed Computing with Julia For Data Science: Excel in Data Analysis, Statistical Modeling and Machine Learning by … to optimize workflows (English Edition)
Machine Learning and Deep Learning in Computational Toxicology (Computational Methods in Engineering and the Sciences)
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning for Beginners A Math Guide to Mastering Deep Learning and Business Application. Understand How Artificial Intelligence, Data Science, and Neural Networks Work Through Real Examples
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Machine Learning Engineering (Final Version)
Statistical Machine Learning for Engineering with Applications
Machine Learning and Optimization for Engineering Design
Statistical Machine Learning for Engineering with Applications
Machine Learning and Optimization for Engineering Design
Active Machine Learning with Python: Refine and elevate data quality over quantity with active learning
Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data (Princeton Series in Modern Observational Astronomy, 1)
Learn Python Programming A Beginners Crash Course on Python Language for Getting Started with Machine Learning, Data Science and Data Analytics (Artificial Intelligence Book 1)
Machine Learning for Data Science Handbook: Data Mining and Knowledge Discovery Handbook
Coding with Python Python for Data Analysis and Machine Learning, Let’s Make Data Talk
Machine Learning and Data Mining