BOOKS - Introduction to Data Science in Biostatistics Using R, the Tidyverse Ecosyste...
Introduction to Data Science in Biostatistics Using R, the Tidyverse Ecosystem, and APIs - Thomas W. MacFarland 2024 PDF Springer BOOKS
ECO~19 kg CO²

2 TON

Views
43063

Telegram
 
Introduction to Data Science in Biostatistics Using R, the Tidyverse Ecosystem, and APIs
Author: Thomas W. MacFarland
Year: 2024
Pages: 536
Format: PDF
File size: 21.5 MB
Language: ENG



Pay with Telegram STARS
Introduction to Data Science in Biostatistics Using R the Tidyverse Ecosystem and APIs In today's world, technology is advancing at an unprecedented rate, and the need for skilled professionals who can navigate this ever-evolving landscape is growing exponentially. One such field that has seen significant growth in recent years is data science, particularly in the realm of biostatistics. As a result, there is a pressing need for individuals who possess a deep understanding of the technological process of developing modern knowledge and the ability to communicate complex concepts in an accessible manner. This book, "Introduction to Data Science in Biostatistics Using R the Tidyverse Ecosystem and APIs aims to fill this gap by providing readers with foundational knowledge of required skills, job trends, and salary expectations in the field of data science, specifically within the context of biostatistics. The text begins by defining and exploring the term "Data Science" and discussing the various professional skills and competencies affiliated with the industry.
Введение в науку о данных в биостатистике с использованием R Экосистема Tidyverse и API В современном мире технологии развиваются с беспрецедентной скоростью, и потребность в квалифицированных специалистах, способных ориентироваться в этой постоянно развивающейся среде, растет экспоненциально. Одной из таких областей, в которой наблюдается значительный рост в последние годы, является наука о данных, особенно в области биостатистики. В результате возникает насущная потребность в личностях, обладающих глубоким пониманием технологического процесса развития современных знаний и умением доступно доносить сложные понятия. Эта книга «Введение в науку о данных в биостатистике с использованием экосистемы и API R the Tidyverse» призвана восполнить этот пробел, предоставляя читателям фундаментальные знания о необходимых навыках, тенденциях в работе и ожиданиях по зарплате в области науки о данных, особенно в контексте биостатистики. Текст начинается с определения и изучения термина «Наука о данных» и обсуждения различных профессиональных навыков и компетенций, связанных с отраслью.
Introduction à la science des données en biostatistique en utilisant R Écosystème Tidyverse et API Dans le monde d'aujourd'hui, les technologies évoluent à un rythme sans précédent et le besoin de spécialistes qualifiés capables de naviguer dans cet environnement en constante évolution augmente de façon exponentielle. L'un de ces domaines, qui a connu une croissance considérable ces dernières années, est la science des données, en particulier dans le domaine de la biostatistique. Il en résulte un besoin urgent de personnes ayant une compréhension approfondie du processus technologique de développement des connaissances modernes et la capacité de communiquer des concepts complexes. Ce livre « Introduction à la science des données en biostatistique en utilisant l'écosystème et l'API R the Tidyverse » vise à combler cette lacune en fournissant aux lecteurs des connaissances fondamentales sur les compétences nécessaires, les tendances du travail et les attentes salariales en science des données, en particulier dans le contexte de la biostatistique. texte commence par la définition et l'étude du terme « Data Science » et une discussion sur les différentes compétences et compétences professionnelles liées à l'industrie.
Introducción a la ciencia de los datos en bioestadística utilizando R Ecosistema Tidyverse y API En el mundo actual, la tecnología evoluciona a una velocidad sin precedentes y la necesidad de profesionales cualificados capaces de navegar por este entorno en constante evolución crece exponencialmente. Una de estas áreas, que ha experimentado un crecimiento significativo en los últimos , es la ciencia de los datos, especialmente en el campo de la bioestadística. resultado es una necesidad apremiante de personalidades que tengan una comprensión profunda del proceso tecnológico del desarrollo del conocimiento moderno y la capacidad de comunicar conceptos complejos de manera accesible. Este libro, «Introducción a la ciencia de los datos en la bioestadística utilizando el ecosistema y la API R the Tidyverse», está diseñado para llenar esta brecha proporcionando a los lectores conocimientos fundamentales sobre las habilidades necesarias, tendencias laborales y expectativas salariales en el campo de la ciencia de los datos, especialmente en el contexto de la bioestadística. texto comienza definiendo y estudiando el término «Ciencia de Datos» y discutiendo las diferentes habilidades y competencias profesionales relacionadas con la industria.
Einführung in die Datenwissenschaft in der Biostatistik mit R Das Tidyverse-Ökosystem und APIs In der heutigen Welt entwickelt sich die Technologie mit beispielloser Geschwindigkeit und der Bedarf an qualifizierten Fachkräften, die in dieser sich ständig weiterentwickelnden Umgebung navigieren können, wächst exponentiell. Ein solcher Bereich, der in den letzten Jahren stark gewachsen ist, ist die Datenwissenschaft, insbesondere im Bereich der Biostatistik. Infolgedessen besteht ein dringendes Bedürfnis nach Persönlichkeiten, die ein tiefes Verständnis für den technologischen Prozess der Entwicklung modernen Wissens haben und in der Lage sind, komplexe Konzepte zu vermitteln. Dieses Buch „Introduction to Data Science in Biostatistics using the Ecosystem and API R the Tidyverse“ soll diese Lücke schließen, indem es den sern grundlegendes Wissen über die notwendigen Fähigkeiten, Jobtrends und Gehaltserwartungen im Bereich der Datenwissenschaft, insbesondere im Kontext der Biostatistik, vermittelt. Der Text beginnt mit der Definition und Untersuchung des Begriffs „Data Science“ und diskutiert die verschiedenen beruflichen Fähigkeiten und Kompetenzen der Branche.
''
Biyoistatistikte Veri Bilimine Giriş R Tidyverse Ekosistemi ve API Teknolojisi, günümüz dünyasında benzeri görülmemiş bir hızla gelişiyor ve sürekli gelişen bu ortamda gezinmek için yetenekli profesyonellere olan ihtiyaç katlanarak artıyor. Son yıllarda önemli bir büyüme gösteren bu alanlardan biri, özellikle biyoistatistik alanında veri bilimidir. Sonuç olarak, modern bilgiyi geliştirmenin teknolojik sürecini ve karmaşık kavramları iletme yeteneğini derinlemesine anlayan bireylere acil bir ihtiyaç vardır. "An Introduction to Data Science in Bioistatistics Using the Ecosystem and the R the Tidyverse API'adlı bu kitap, özellikle biyoistatistik bağlamında, okuyuculara veri biliminde gerekli beceriler, iş eğilimleri ve maaş beklentileri hakkında temel bilgiler sağlayarak bu boşluğu doldurmayı amaçlamaktadır. Metin, "Veri Bilimi" terimini tanımlayarak ve keşfederek ve sektörle ilgili çeşitli mesleki beceri ve yetkinlikleri tartışarak başlar.
مقدمة لعلوم البيانات في الإحصاء الحيوي باستخدام النظام البيئي R Tidyverse وتكنولوجيا API تتطور بمعدل غير مسبوق في عالم اليوم، وتتزايد الحاجة إلى مهنيين مهرة للتنقل في هذه البيئة دائمة التطور بشكل كبير. أحد هذه المجالات التي شهدت نموًا كبيرًا في السنوات الأخيرة هو علم البيانات، لا سيما في الإحصاء الحيوي. ونتيجة لذلك، هناك حاجة ملحة للأفراد الذين لديهم فهم عميق للعملية التكنولوجية لتطوير المعرفة الحديثة والقدرة على نقل المفاهيم المعقدة. يهدف هذا الكتاب، «مقدمة لعلوم البيانات في الإحصاء الحيوي باستخدام النظام البيئي وواجهة برمجة التطبيقات R the Tidyverse»، إلى سد هذه الفجوة من خلال تزويد القراء بالمعرفة الأساسية حول المهارات اللازمة واتجاهات العمل وتوقعات الرواتب في علم البيانات، خاصة في سياق الإحصاء الحيوي. يبدأ النص بتعريف واستكشاف مصطلح «علوم البيانات» ومناقشة المهارات والكفاءات المهنية المختلفة المتعلقة بالصناعة.

You may also be interested in:

Graph Data Science with Python and Neo4j: Hands-on Projects on Python and Neo4j Integration for Data Visualization and Analysis Using Graph Data … Enterprise Strategies (English Edition)
Ultimate Parallel and Distributed Computing with Julia For Data Science Excel in Data Analysis, Statistical Modeling and Machine Learning by Leveraging MLBase.jl and MLJ.jl to Optimize Workflows
Ultimate Parallel and Distributed Computing with Julia For Data Science Excel in Data Analysis, Statistical Modeling and Machine Learning by Leveraging MLBase.jl and MLJ.jl to Optimize Workflows
Ultimate Parallel and Distributed Computing with Julia For Data Science: Excel in Data Analysis, Statistical Modeling and Machine Learning by … to optimize workflows (English Edition)
Geospatial Data Science: A Hands-On Approach for Building Geospatial Applications Using Linked Data Technologies (ACM Books)
Python Machine Learning Discover the Essentials of Machine Learning, Data Analysis, Data Science, Data Mining and Artificial Intelligence Using Python Code with Python Tricks
Practical Data Science with Hadoop and Spark: Designing and Building Effective Analytics at Scale (Addison-Wesley Data and Analytics)
Artificial Intelligence For Business How Your Company Can Make More Profit with Machine Learning, Data Science, Big Data, and Deep Learning
Python Data Science How to Learn Step by Step Programming, Data Analytics, and Coding Essentials Tools
Data Science on the Google Cloud Platform Implementing End-to-End Real-time Data Pipelines from ingest to machine learning
Transactions on Large-Scale Data- and Knowledge-Centered Systems LIV: Special Issue on Data Management - Principles, Technologies, and Applications (Lecture Notes in Computer Science Book 14160)
SQL for Data Analysis: A Middle-Level Guide to Integrating SQL with Data Science Tools
SQL for Data Analysis A Middle-Level Guide to Integrating SQL with Data Science Tools
SQL for Data Analysis A Middle-Level Guide to Integrating SQL with Data Science Tools
PYTHON ARRAYS AND PYTHON NUMPY FOR BEGINNERS: MASTER DATA MANIPULATION EASILY AND UNLEASH THE POWER OF DATA SCIENCE WITH EASY-TO-FOLLOW TUTORIALS - 2 BOOKS IN 1
Learn Python Programming A Beginners Crash Course on Python Language for Getting Started with Machine Learning, Data Science and Data Analytics (Artificial Intelligence Book 1)
The Enterprise Big Data Lake Delivering on the Promise of Hadoop and Data Science in the Enterprise
Python for Data Science Data analysis and Deep learning with Python coding and programming
Machine Learning for Data Science Handbook: Data Mining and Knowledge Discovery Handbook
Algorithms and Data Structures with Python: An interactive learning experience: Comprehensive introduction to data structures and algorithms (Spanish Edition)
Data Analytics and Python Programming 2 Bundle Manuscript Beginners Guide to Learn Data Analytics, Predictive Analytics and Data Science with Python Programming
Introduction to Algorithms & Data Structures 3 Learn Linear Data Structures with Videos & Interview Questions
Deciphering Data Architectures Choosing Between a Modern Data Warehouse, Data Fabric, Data Lakehouse, and Data Mesh
Deciphering Data Architectures Choosing Between a Modern Data Warehouse, Data Fabric, Data Lakehouse, and Data Mesh
Algorithms and Data Structures with Python An interactive learning experience Comprehensive introduction to data structures and algorithms
Algorithms and Data Structures with Python An interactive learning experience Comprehensive introduction to data structures and algorithms
Python for Data Science Master Data Analysis from Scratch, with Business Analytics Tools and Step-by-Step techniques for Beginners. The Future of Machine Learning & Applied Artificial Intelligence
Python Data Science A Step-By-Step Guide to Data Analysis
Think Like a Data Scientist Tackle the data science process step-by-step
Open Heritage Data An Introduction to Research, Publishing and Programming with Open Data in the Heritage Sector
Coding with Python The Ultimate Guide For Data Science, a Smart Way to Program With Python, Understand Data Analytics and Deep Learning Faster Computer Programming for Beginners (Book Python 3)
Soft Computing in Data Science: 7th International Conference, SCDS 2023, Virtual Event, January 24-25, 2023, Proceedings (Communications in Computer and Information Science Book 1771)
Python for Data Science A step-by-step Python Programming Guide to Master Big Data, Analysis, Machine Learning, and Artificial Intelligence
Python Data Science The Bible. The Ultimate Beginner’s Guide to Learn Data Analysis, from the Basics and Essentials, to Advance Content! (Python Programming, Python Crash Course, Coding Made Easy Book
PYTHON 2 Books in 1 Python Programming & Data Science. Master Data Analysis in Less than 7 Days and Discover the Secrets of Machine Learning with Step-by-Step Exercises
Python for Data Analysis The Ultimate Beginner|s Guide to Learn programming in Python for Data Science with Pandas and NumPy, Master Statistical Analysis, and Visualization
Data Science and Machine Learning Interview Questions Using R Crack the Data Scientist and Machine Learning Engineers Interviews with Ease
Data Science and Machine Learning Interview Questions Using R: Crack the Data Scientist and Machine Learning Engineers Interviews with Ease
Reproducible Data Science with Pachyderm: Learn how to build version-controlled, end-to-end data pipelines using Pachyderm 2.0
Python Programming 2 Books in 1 Python for Data Analysis and Science with Big Data Analysis, Statistics and Machine Learning