BOOKS - PROGRAMMING - Handbook of Deep Learning in Biomedical Engineering Techniques ...
Handbook of Deep Learning in Biomedical Engineering Techniques and Applications - Editors Valentina Balas, Brojo Mishra, Raghvendra Kumar 2021 PDF Academic Press BOOKS PROGRAMMING
ECO~15 kg CO²

1 TON

Views
18269

Telegram
 
Handbook of Deep Learning in Biomedical Engineering Techniques and Applications
Author: Editors Valentina Balas, Brojo Mishra, Raghvendra Kumar
Year: 2021
Pages: 307
Format: PDF
File size: 14.01 MB
Language: ENG



Pay with Telegram STARS
The purpose of this handbook is to provide a comprehensive resource on DL techniques that can be applied to solve various problems in biomedicine and healthcare. Book Description: Handbook of Deep Learning in Biomedical Engineering Techniques and Applications Editors Valentina Balas, Brojo Mishra, Raghvendra Kumar 2021 307 Editors Valentina Balas, Brojo Mishra, Raghvendra Kumar Summary: The Handbook of Deep Learning in Biomedical Engineering Techniques and Applications is a comprehensive resource for understanding the essential concepts of deep learning (DL) and its applications in the field of biomedicine and healthcare. This book provides an overview of DL methods and their applications in solving various problems in biomedicine and healthcare, offering a thorough understanding of the technology's evolution, need, and possibility of developing a personal paradigm for perceiving the technological process of developing modern knowledge as the basis for human survival and unity in a warring state. The book begins with an introduction to DL, including its history, evolution, and current trends, providing readers with a solid foundation for understanding the technology's potential and limitations. The authors then delve into the fundamental principles of DL, explaining how multiple layers of learning transform raw data into more abstract and composite information, enabling the extraction of high-level features from large datasets. They explore the different types of DL algorithms, such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative adversarial networks (GANs), and discuss their applications in medical imaging, genetics, and other areas of biomedicine.
Цель этого руководства - предоставить исчерпывающий ресурс по методам DL, которые можно применять для решения различных проблем в биомедицине и здравоохранении. Справочник по глубокому обучению в методах и приложениях биомедицинской инженерии Редакторы Валентина Балас, Бройо Мишра, Рагвендра Кумар 2021 307 Редакторы Валентина Балас, Бройо Мишра, Рагвендра Кумар Резюме: Справочник по глубокому обучению в методах и приложениях биомедицинской инженерии является всеобъемлющим ресурсом для понимания основных концепций глубокого обучения (DL) и его приложений в области биомедицины и здравоохранения. Эта книга содержит обзор методов DL и их применения при решении различных проблем в биомедицине и здравоохранении, предлагая полное понимание эволюции технологии, потребности и возможности разработки личной парадигмы для восприятия технологического процесса развития современных знаний. как основа выживания человека и единства в воюющем государстве. Книга начинается с введения в DL, включая его историю, эволюцию и современные тенденции, предоставляя читателям прочную основу для понимания потенциала и ограничений технологии. Затем авторы углубляются в фундаментальные принципы DL, объясняя, как несколько уровней обучения превращают необработанные данные в более абстрактную и составную информацию, позволяя извлекать функции высокого уровня из больших наборов данных. Они исследуют различные типы алгоритмов DL, такие как сверточные нейронные сети (CNN), рекуррентные нейронные сети (RNN) и генеративные состязательные сети (GAN), и обсуждают их применение в медицинской визуализации, генетике и других областях биомедицины.
''
このガイドの目的は、バイオメディシンやヘルスケアのさまざまな問題に適用できるDL方法に関する包括的なリソースを提供することです。バイオメディカルエンジニアリング手法とアプリケーションエディターValentina Balas、 Broyo Mishra、 Ragvendra Kumar 2021 307編集者Valentina Balas、 Broyo Mishra、 Ragvendra Kumarの概要: バイオメディカルエンジニアリング手法と応用におけるディープラーニングのガイドは、ディープラーニング(DL)のコア概念と、バイオメディシンおよびヘルスケアにおけるその応用を理解するための包括的なリソースです。本書では、DL手法の概要と、バイオメディシンやヘルスケアにおける様々な問題の解決への応用について説明し、技術の進化、現代の知識を開発する技術プロセスの認識のための個人的なパラダイムの開発の必要性と可能性を完全に理解することを提供します。戦争状態での人間の生存と統一の基礎として。この本は、DLの歴史、進化、現在のトレンドなどの紹介から始まり、読者に技術の可能性と限界を理解するための確かな基盤を提供します。次に、DLの基本原則を掘り下げ、複数のレベルの学習によって生データがより抽象的で複合的な情報に変換され、大規模なデータセットから高レベルの関数を抽出できるようになる方法を説明した。彼らは、畳み込みニューラルネットワーク(CNNs)、再発ニューラルネットワーク(RNNs)、生成的敵対ネットワーク(GANs)など、さまざまな種類のDLアルゴリズムを探索し、医療画像、遺伝学、およびその他のバイオメディシン分野での応用について議論している。

You may also be interested in:

Handbook of Deep Learning in Biomedical Engineering Techniques and Applications
Deep Learning for Data Analytics Foundations, Biomedical Applications, and Challenges
Handbook of Research on Deep Learning Innovations and Trends
Deep Learning for Data Architects: Unleash the power of Python|s deep learning algorithms (English Edition)
Java Deep Learning Projects: Implement 10 real-world deep learning applications using Deeplearning4j and open source APIs
Getting started with Deep Learning for Natural Language Processing Learn how to build NLP applications with Deep Learning
Building Scalable Deep Learning Pipelines on AWS Develop, Train, and Deploy Deep Learning Models
Deep Learning for the Life Sciences Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More First Edition
Deep Learning fur die Biowissenschaften Einsatz von Deep Learning in Genomik, Biophysik, Mikroskopie und medizinischer Analyse
Anatomy of Deep Learning Principles: Writing a deep learning library from scratch (Japanese Edition)
Deep Learning for Data Architects Unleash the power of Python|s deep learning algorithms
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Deep Learning for the Life Sciences Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More
Deep Learning for Data Architects Unleash the power of Python|s deep learning algorithms
Programming PyTorch for Deep Learning Creating and Deploying Deep Learning Applications First Edition
Deep Learning With Python Develop Deep Learning Models on Theano and TensorFlow using Keras
Practical Mathematics for AI and Deep Learning: A Concise yet In-Depth Guide on Fundamentals of Computer Vision, NLP, Complex Deep Neural Networks and Machine Learning (English Edition)
Mastering Deep Learning: A Comprehensive Guide to Master Deep Learning
Mastering Deep Learning A Comprehensive Guide to Master Deep Learning
Mastering Deep Learning A Comprehensive Guide to Master Deep Learning
Hands-on Deep Learning A Guide to Deep Learning with Projects and Applications
Deep Learning Beginner’s Guide to Learn the Realms of Deep Learning from A-Z
Neural Networks and Deep Learning Neural Networks & Deep Learning, Deep Learning, Big Data
Fundamentals of Machine & Deep Learning A Complete Guide on Python Coding for Machine and Deep Learning with Practical Exercises for Learners (Sachan Book 102)
Deep Learning with Python The Crash Course for Beginners to Learn the Basics of Deep Learning with Python Using TensorFlow, Keras and PyTorch
Deep Learning with Python Comprehensive Beginners Guide to Learn and Understand the Realms of Deep Learning with Python
Beginning with Deep Learning Using TensorFlow A Beginners Guide to TensorFlow and Keras for Practicing Deep Learning Principle
Deep Learning With Python Simple and Effective Tips and Tricks to Learn Deep Learning with Python
Google JAX Essentials A quick practical learning of blazing-fast library for Machine Learning and Deep Learning projects
Deep Learning With Python Advanced and Effective Strategies of Using Deep Learning with Python Theories
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Artificial Intelligence What You Need to Know About Machine Learning, Robotics, Deep Learning, Recommender Systems, Internet of Things, Neural Networks, Reinforcement Learning, and Our Future
Deep Learning with Python The Ultimate Beginners Guide for Deep Learning with Python
Deep Machine Learning Complete Tips and Tricks to Deep Machine Learning
The Biomedical Engineering Handbook, Third Edition
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Deep Learning with Python The ultimate beginners guide to Learn Deep Learning with Python Step by Step
Deep Learning for Natural Language Processing Develop Deep Learning Models for Natural Language in Python