BOOKS - PROGRAMMING - Graph-Powered Machine Learning
Graph-Powered Machine Learning - Alessandro Negro 2021 PDF Manning Publications BOOKS PROGRAMMING
ECO~18 kg CO²

1 TON

Views
712025

Telegram
 
Graph-Powered Machine Learning
Author: Alessandro Negro
Year: 2021
Pages: 493
Format: PDF
File size: 26,2 MB
Language: ENG



. Discover how to apply graph power to realworld problems and gain practical experience with graph databases and cloud services. Book Description: GraphPowered Machine Learning Alessandro Negro 2021 493 Genre: Non-Fiction, Technology, Machine Learning In today's world, technology is advancing at an unprecedented rate, and it is crucial for humanity to understand and adapt to these changes to ensure our survival. GraphPowered Machine Learning is a groundbreaking book that explores the intersection of graph technology and machine learning, providing readers with a comprehensive understanding of the process of technological evolution and its impact on modern knowledge. This book is a must-read for anyone interested in the future of technology, as it offers insights into the need and possibility of developing a personal paradigm for perceiving the technological process and the importance of adapting our approach to studying new technologies. The Core of Machine Learning: Efficiently Identifying Patterns and Relationships At its core, machine learning is about efficiently identifying patterns and relationships in data. GraphPowered Machine Learning delves into the role of graphs in machine learning and big data platforms, introducing readers to techniques such as data source modeling, algorithm design, link analysis, classification, and clustering. The book provides an in-depth look at these concepts, enabling readers to master the core principles and apply them to real-world problems. Three End-to-End Projects: Practical Experience with Graph Databases and Cloud Services Through three end-to-end projects, readers will gain practical experience with graph databases and cloud services, illustrating architectures' best design practices, optimization approaches, and common pitfalls. These projects provide hands-on experience in applying graph power to real-world problems, allowing readers to gain a deeper understanding of the subject matter.
.Узнайте, как применять мощность графа для решения реальных задач и получите практический опыт работы с графовыми базами данных и облачными сервисами. GraphPowered Machine arning Алессандро Негро 2021 493 Жанр: нон-фикшн, технологии, машинное обучение В современном мире технологии развиваются с беспрецедентной скоростью, и человечеству крайне важно понять и адаптироваться к этим изменениям, чтобы обеспечить наше выживание. GraphPowered Machine arning - это новаторская книга, которая исследует пересечение графовой технологии и машинного обучения, предоставляя читателям всестороннее понимание процесса технологической эволюции и его влияния на современные знания. Эта книга является обязательной для прочтения всем, кто интересуется будущим технологий, поскольку она предлагает понимание необходимости и возможности разработки личной парадигмы восприятия технологического процесса и важности адаптации нашего подхода к изучению новых технологий. Основа машинного обучения: эффективное определение закономерностей и отношений В своей основе машинное обучение заключается в эффективном определении закономерностей и отношений в данных. GraphPowered Machine arning углубляется в роль графов в машинном обучении и платформах больших данных, знакомя читателей с такими методами, как моделирование источников данных, проектирование алгоритмов, анализ связей, классификация и кластеризация. Книга дает глубокий взгляд на эти концепции, позволяя читателям освоить основные принципы и применить их к реальным проблемам. Три сквозных проекта: практический опыт работы с графовыми базами данных и облачными сервисами Благодаря трем сквозным проектам читатели получат практический опыт работы с графовыми базами данных и облачными сервисами, иллюстрируя лучшие практики проектирования архитектур, подходы к оптимизации и общие подводные камни. Эти проекты предоставляют практический опыт применения силы графа к реальным проблемам, позволяя читателям глубже понять предмет.
. Conozca cómo aplicar la potencia del gráfico para resolver problemas reales y obtenga experiencia práctica con bases de datos gráficas y servicios en la nube. GraphPowered Machine arning Alessandro Negro 2021 493 Género: no ficción, tecnología, machine learning En el mundo actual, la tecnología evoluciona a una velocidad sin precedentes y es fundamental que la humanidad comprenda y se adapte a estos cambios para garantizar nuestra supervivencia. GraphPowered Machine arning es un libro pionero que explora la intersección entre la tecnología gráfica y el aprendizaje automático, proporcionando a los lectores una comprensión integral del proceso de evolución tecnológica y su impacto en el conocimiento actual. Este libro es de lectura obligada para todos los interesados en el futuro de la tecnología, ya que ofrece una comprensión de la necesidad y posibilidad de desarrollar un paradigma personal de percepción del proceso tecnológico y de la importancia de adaptar nuestro enfoque al estudio de las nuevas tecnologías. Base del aprendizaje automático: definición efectiva de patrones y relaciones En su base, el aprendizaje automático consiste en la determinación efectiva de patrones y relaciones en los datos. GraphPowered Machine arning profundiza en el papel de los gráficos en el aprendizaje automático y las plataformas de big data, introduciendo a los lectores en técnicas como la simulación de fuentes de datos, el diseño de algoritmos, el análisis de relaciones, la clasificación y la clusterización. libro ofrece una visión profunda de estos conceptos, permitiendo a los lectores dominar los principios básicos y aplicarlos a problemas reales. Tres proyectos transversales: experiencia práctica con bases de datos gráficas y servicios en la nube A través de tres proyectos transversales, los lectores obtendrán experiencia práctica con bases de datos gráficas y servicios en la nube, ilustrando las mejores prácticas de diseño de arquitecturas, enfoques de optimización y escollos comunes. Estos proyectos proporcionan una experiencia práctica en el uso de la fuerza del grafo a problemas reales, lo que permite a los lectores comprender más a fondo el tema.
''
。グラフデータベースやクラウドサービスで、グラフ力を使って現実の問題を解決し、実務経験を積む。GraphPowered Machine arningアレッサンドロ・ネグロ2021 493ジャンル:ノンフィクション、テクノロジー、機械学習今日の世界では、テクノロジーは前例のない速度で進化しており、人類が私たちの生存を確実にするためにこれらの変化を理解し、適応することが不可欠です。GraphPowered Machine arningは、グラフ技術と機械学習の交差点を探求する画期的な本で、技術進化のプロセスと現代の知識への影響についての包括的な理解を読者に提供します。この本は、プロセス認識のための個人的なパラダイムを開発する必要性と機会を理解し、新しい技術について学ぶために私たちのアプローチを適応することの重要性を提供するので、技術の未来に興味のある人にとって必読です。機械学習の基礎:パターンと関係の効果的な決定そのコアでは、機械学習は、データ内のパターンと関係の効果的な決定で構成されています。GraphPowered Machine arningは、機械学習とビッグデータプラットフォームにおけるグラフの役割を掘り下げ、データソースモデリング、アルゴリズムデザイン、リンク解析、分類、クラスタリングなどの技術を読者に紹介します。本は、読者が基本的な原則を習得し、実際の問題にそれらを適用することを可能にする、これらの概念を詳細に見て提供します。3つのエンドツーエンドのプロジェクト:グラフデータベースとクラウドサービスの実践的な経験3つのエンドツーエンドのプロジェクトで、読者はグラフデータベースとクラウドサービスの実践的な経験を得ることができます。これらのプロジェクトは、実際の問題にグラフ力を適用する実践的な経験を提供し、読者が主題をより深く理解することを可能にします。

You may also be interested in:

Graph-Powered Machine Learning
Graph-Powered Analytics and Machine Learning with TigerGraph
Graph-Powered Analytics and Machine Learning with TigerGraph: Driving Business Outcomes with Connected Data
Graph-Powered Analytics and Machine Learning with TigerGraph Driving Business Outcomes with Connected Data (10th Early Release)
Graph-Powered Analytics and Machine Learning with TigerGraph Driving Business Outcomes with Connected Data (9th Early Release)
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning
Machine Learning for Emotion Analysis in Python: Build AI-powered tools for analyzing emotion using natural language processing and machine learning
Graph-Powered Analytics and Machine Learning with TigerGraph Driving Business Outcomes with Connected data Driving Business Outcomes with Connected Data (Final)
Building Machine Learning Powered Applications (Early Release)
AI-Powered Ecommerce How Machine Learning Is Transforming Online Shopping
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Machine Learning for Beginners An Introductory Guide to Learn and Understand Artificial Intelligence, Neural Networks and Machine Learning
Machine Learning for Business The Ultimate Artificial Intelligence & Machine Learning for Managers, Team Leaders and Entrepreneurs
Building Machine Learning Systems Using Python Practice to Train Predictive Models and Analyze Machine Learning Results
Machine Learning in Production: Master the art of delivering robust Machine Learning solutions with MLOps (English Edition)
Serverless Machine Learning with Amazon Redshift ML: Create, train, and deploy machine learning models using familiar SQL commands
Applied Machine Learning and High-Performance Computing on AWS: Accelerate the development of machine learning applications following architectural best practices
Online Machine Learning: A Practical Guide with Examples in Python (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning Master Machine Learning Fundamentals for Beginners, Business Leaders and Aspiring Data Scientists
Machine Learning for Data Streams with Practical Examples in MOA (Adaptive Computation and Machine Learning series)
The Practitioner|s Guide to Graph data Applying Graph Thinking and Graph Technologies to Solve Complex Problems
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning with Core ML 2 and Swift A beginner-friendly guide to integrating machine learning into your apps
Robust Machine Learning: Distributed Methods for Safe AI (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning for Beginners Build and deploy Machine Learning systems using Python, 2nd Edition
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming With Python 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis
Machine Learning for Beginners A Practical Guide to Understanding and Applying Machine Learning Concepts
Pragmatic Machine Learning with Python Learn How to Deploy Machine Learning Models in Production
Machine Learning, Animated (Chapman and Hall CRC Machine Learning and Pattern Recognition)
Machine Learning for Absolute Beginners An Absolute beginner’s guide to learning and understanding machine learning successfully