BOOKS - PROGRAMMING - Deep Learning Through Sparse and Low-Rank Modeling
Deep Learning Through Sparse and Low-Rank Modeling - Zhangyang Wang, Yun Fu, Thomas S Huang 2019 PDF Academic Press BOOKS PROGRAMMING
ECO~14 kg CO²

1 TON

Views
81483

Telegram
 
Deep Learning Through Sparse and Low-Rank Modeling
Author: Zhangyang Wang, Yun Fu, Thomas S Huang
Year: 2019
Pages: 281
Format: PDF
File size: 17.8 MB
Language: ENG



Pay with Telegram STARS
Book Description: Deep Learning Through Sparse and Low-Rank Modeling Author: Zhangyang Wang, Yun Fu, Thomas S Huang 2019 281 Academic Press Summary: Deep Learning through Sparse and Low-Rank Modeling is a comprehensive guide to understanding the intersection of classical sparse and low-rank methods with recent deep network models, enabling a greater learning capacity and better utilization of big data. This book explores the connection between these two techniques, providing a wealth of theoretical and analytical tools to guide the design and interpretation of deep learning models. With a focus on practical applications in computer vision, machine learning, signal processing, and data mining, this book offers a thorough understanding of the tools and their applications. Introduction: In today's world, technology is advancing at an unprecedented rate, and it is essential to understand the process of technological evolution to survive and thrive.
Deep arning Through Sparse and Low-Rank Modeling Author: Zhangyang Wang, Yun Fu, Thomas S Huang 2019 281 Academic Press Summary: Deep arning through Sparse and Low-Rank Modeling - это всеобъемлющее руководство по пониманию пересечения классических разреженных и низкоуровневых методов с недавними моделями глубокой сети, позволяющее повышение способности к обучению и более эффективное использование больших данных. Эта книга исследует связь между этими двумя методами, предоставляя множество теоретических и аналитических инструментов для руководства дизайном и интерпретацией моделей глубокого обучения. Эта книга посвящена практическим применениям в области компьютерного зрения, машинного обучения, обработки сигналов и интеллектуального анализа данных и предлагает полное понимание инструментов и их приложений. Введение: В современном мире технологии развиваются с беспрецедентной скоростью, и важно понимать процесс технологической эволюции, чтобы выжить и процветать.
Deep arning Through Sparse and Low-Rank Modeling Author: Zhangyang Wang, Yun Fu, Thomas S Huang 2019 281 Academic Press Summary: Deep arning Throgh Sparse and Low-Rank Modeling è una guida completa alla comprensione dell'intersezione tra i metodi classici a basso livello e i modelli più recenti di rete profonda per migliorare la capacità di apprendimento e l'utilizzo dei dati di grandi dimensioni. Questo libro esamina la relazione tra i due metodi fornendo numerosi strumenti teorici e analitici per guidare il design e l'interpretazione dei modelli di apprendimento approfondito. Questo libro è dedicato alle applicazioni pratiche per la visione dei computer, l'apprendimento automatico, l'elaborazione dei segnali e l'analisi intelligente dei dati e offre una comprensione completa degli strumenti e delle loro applicazioni. Introduzione: Nel mondo moderno, la tecnologia evolve ad una velocità senza precedenti, ed è importante comprendere l'evoluzione tecnologica per sopravvivere e prosperare.
''
SparseとLow-Rank Modelingによる深層学習著者:Zhangyang Wang、 Yun Fu、 Thomas S Huang 2019 281 Academic Press Summary: SparseとLow-Rank Modelingによる深層学習は、古典の交差を理解するための包括的なガイドです最近のディープネットワークモデルを使用したスパースと低レベルの方法により、学習能力の向上とビッグデータのより効率的な使用を可能にします。本書では、深層学習モデルの設計と解釈を導くための多くの理論的および分析的ツールを提供する、これら2つの方法の間の接続を探求します。本書では、コンピュータビジョン、機械学習、信号処理、データマイニングにおける実用的なアプリケーションに焦点を当て、ツールとそのアプリケーションの完全な理解を提供します。はじめに:今日の世界では、技術は前例のない速度で進化しており、生き残り、繁栄するためには、技術進化のプロセスを理解することが重要です。

You may also be interested in:

Deep Learning Through Sparse and Low-Rank Modeling
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Deep Learning for Data Architects: Unleash the power of Python|s deep learning algorithms (English Edition)
Java Deep Learning Projects: Implement 10 real-world deep learning applications using Deeplearning4j and open source APIs
Deep Learning for the Life Sciences Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More First Edition
Getting started with Deep Learning for Natural Language Processing Learn how to build NLP applications with Deep Learning
Building Scalable Deep Learning Pipelines on AWS Develop, Train, and Deploy Deep Learning Models
Deep Learning fur die Biowissenschaften Einsatz von Deep Learning in Genomik, Biophysik, Mikroskopie und medizinischer Analyse
Deep Learning for the Life Sciences Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More
Deep Learning for Data Architects Unleash the power of Python|s deep learning algorithms
Anatomy of Deep Learning Principles: Writing a deep learning library from scratch (Japanese Edition)
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Deep Learning for Data Architects Unleash the power of Python|s deep learning algorithms
Deep Learning With Python Develop Deep Learning Models on Theano and TensorFlow using Keras
Programming PyTorch for Deep Learning Creating and Deploying Deep Learning Applications First Edition
Practical Mathematics for AI and Deep Learning: A Concise yet In-Depth Guide on Fundamentals of Computer Vision, NLP, Complex Deep Neural Networks and Machine Learning (English Edition)
Mastering Deep Learning A Comprehensive Guide to Master Deep Learning
Mastering Deep Learning: A Comprehensive Guide to Master Deep Learning
Deep Learning Beginner’s Guide to Learn the Realms of Deep Learning from A-Z
Hands-on Deep Learning A Guide to Deep Learning with Projects and Applications
Mastering Deep Learning A Comprehensive Guide to Master Deep Learning
Neural Networks and Deep Learning Neural Networks & Deep Learning, Deep Learning, Big Data
Fundamentals of Machine & Deep Learning A Complete Guide on Python Coding for Machine and Deep Learning with Practical Exercises for Learners (Sachan Book 102)
The F-Rank Foot Soldier Became An S-Rank Monster Rancher Volume 1: Rise of the Weakest Tamer (A Slice of Life Light Novel)
Deep Learning with Python The Crash Course for Beginners to Learn the Basics of Deep Learning with Python Using TensorFlow, Keras and PyTorch
Deep Learning with Python Comprehensive Beginners Guide to Learn and Understand the Realms of Deep Learning with Python
Beginning with Deep Learning Using TensorFlow A Beginners Guide to TensorFlow and Keras for Practicing Deep Learning Principle
Deep Learning With Python Simple and Effective Tips and Tricks to Learn Deep Learning with Python
Google JAX Essentials A quick practical learning of blazing-fast library for Machine Learning and Deep Learning projects
Deep Learning With Python Advanced and Effective Strategies of Using Deep Learning with Python Theories
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Artificial Intelligence What You Need to Know About Machine Learning, Robotics, Deep Learning, Recommender Systems, Internet of Things, Neural Networks, Reinforcement Learning, and Our Future
Deep Machine Learning Complete Tips and Tricks to Deep Machine Learning
Deep Learning with Python The Ultimate Beginners Guide for Deep Learning with Python
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Deep Learning with Python The ultimate beginners guide to Learn Deep Learning with Python Step by Step
Deep Learning for Natural Language Processing Develop Deep Learning Models for Natural Language in Python
Python Deep Learning: Understand how deep neural networks work and apply them to real-world tasks