BOOKS - SCIENCE AND STUDY - Практические занятия по алгебре. Элементы теории множеств...
Практические занятия по алгебре. Элементы теории множеств, теории чисел, комбинаторики. Алгебраические структуры - Ермолаева Н. Н., Козынченко В. А., Курбатова Г. И. 2021 PDF Лань BOOKS SCIENCE AND STUDY
ECO~27 kg CO²

3 TON

Views
33924

Telegram
 
Практические занятия по алгебре. Элементы теории множеств, теории чисел, комбинаторики. Алгебраические структуры
Author: Ермолаева Н. Н., Козынченко В. А., Курбатова Г. И.
Year: 2021
Format: PDF
File size: 12 MB
Language: RU



Pay with Telegram STARS
The book "Практические занятия по алгебре" (Practical Exercises in Algebra) is a comprehensive guide for students of secondary vocational educational institutions who are studying algebra for the first time. The manual covers the fundamental concepts of element theory, number theory, combinatorics, and algebraic structures, providing a solid foundation for further studies in mathematics and computer science. The book is divided into several chapters, each focusing on a specific aspect of algebra. Chapter 1 introduces the basics of set theory, including sets, subsets, and union and intersection operations. Chapter 2 delves into elementary number theory, covering topics such as prime numbers, modular arithmetic, and Diophantine equations. Chapter 3 explores combinatorial problems, including permutations, combinations, and graph theory. Finally, Chapter 4 discusses more advanced algebraic structures, such as groups, rings, and fields. Throughout the book, the author emphasizes the importance of understanding the process of technological evolution and the need to develop a personal paradigm for perceiving the technological development of modern knowledge. This paradigm is essential for the survival of humanity and the unity of people in a warring state. The text encourages readers to approach technology with a critical mindset, recognizing both its benefits and limitations.
книга «Практические занятия по алгебре» (Практические Упражнения в Алгебре) является подробным руководством для студентов вторичных профессиональных учебных заведений, которые изучают алгебру впервые. Руководство охватывает фундаментальные концепции теории элементов, теории чисел, комбинаторики и алгебраических структур, обеспечивая прочную основу для дальнейших исследований в области математики и информатики. Книга разделена на несколько глав, каждая из которых посвящена определённому аспекту алгебры. Глава 1 вводит основы теории множеств, включая множества, подмножества и операции объединения и пересечения. Глава 2 углубляется в элементарную теорию чисел, охватывая такие темы, как простые числа, модульная арифметика и диофантовы уравнения. Глава 3 исследует комбинаторные задачи, включая перестановки, комбинации и теорию графов. Наконец, в главе 4 рассматриваются более продвинутые алгебраические структуры, такие как группы, кольца и поля. На протяжении всей книги автор подчёркивает важность понимания процесса технологической эволюции и необходимость выработки личностной парадигмы восприятия технологического развития современного знания. Эта парадигма необходима для выживания человечества и единства людей в воюющем государстве. Текст призывает читателей подходить к технологиям с критическим настроем, признавая как их преимущества, так и ограничения.
livre « Exercices pratiques sur l'algèbre » est un guide détaillé pour les étudiants des établissements d'enseignement professionnel secondaire qui étudient l'algèbre pour la première fois. guide couvre les concepts fondamentaux de la théorie des éléments, de la théorie des nombres, de la combinatoire et des structures algébriques, fournissant une base solide pour de nouvelles recherches dans le domaine des mathématiques et de l'informatique. livre est divisé en plusieurs chapitres, chacun étant consacré à un aspect particulier de l'algèbre. chapitre 1 présente les bases de la théorie des ensembles, y compris les ensembles, les sous-ensembles et les opérations de fusion et de croisement. chapitre 2 explore la théorie élémentaire des nombres, couvrant des sujets tels que les nombres premiers, l'arithmétique modulaire et les équations diophantiennes. chapitre 3 examine les problèmes combinatoires, y compris les permutations, les combinaisons et la théorie des graphes. Enfin, le chapitre 4 traite des structures algébriques plus avancées telles que les groupes, les anneaux et les champs. Tout au long du livre, l'auteur souligne l'importance de comprendre l'évolution technologique et la nécessité d'élaborer un paradigme personnel de la perception du développement technologique des connaissances modernes. Ce paradigme est essentiel à la survie de l'humanité et à l'unité des hommes dans un État en guerre. texte encourage les lecteurs à aborder les technologies avec une attitude critique, reconnaissant à la fois leurs avantages et leurs limites.
libro «Clases prácticas de álgebra» (Ejercicios prácticos en álgebra) es una guía detallada para los estudiantes de educación profesional secundaria que estudian álgebra por primera vez. manual abarca conceptos fundamentales de teoría de elementos, teoría de números, combinatoria y estructuras algebraicas, proporcionando una base sólida para la investigación adicional en matemáticas e informática. libro está dividido en varios capítulos, cada uno dedicado a un aspecto específico del álgebra. capítulo 1 introduce los fundamentos de la teoría de conjuntos, incluyendo conjuntos, subconjuntos y operaciones de unión y intersección. capítulo 2 profundiza en la teoría elemental de los números, abarcando temas como los números primos, la aritmética modular y las ecuaciones diofánticas. capítulo 3 explora problemas combinatorios, incluyendo permutaciones, combinaciones y teoría de grafos. Finalmente, el capítulo 4 examina estructuras algebraicas más avanzadas, como grupos, anillos y campos. A lo largo del libro, el autor destaca la importancia de comprender el proceso de evolución tecnológica y la necesidad de generar un paradigma personal para percibir el desarrollo tecnológico del conocimiento moderno. Este paradigma es esencial para la supervivencia de la humanidad y la unidad de los seres humanos en un Estado en guerra. texto anima a los lectores a acercarse a la tecnología con una actitud crítica, reconociendo tanto sus ventajas como sus limitaciones.
O livro «Aulas práticas de álgebra» (Exercícios práticos em Algebra) é um guia detalhado para estudantes de ensino secundário profissional que estudam álgebra pela primeira vez. O manual abrange conceitos fundamentais de teoria de elementos, teoria de números, combinação e estruturas álgebricas, fornecendo uma base sólida para mais pesquisas em matemática e informática. O livro é dividido em vários capítulos, cada um sobre um aspecto específico da álgebra. O Capítulo 1 introduz os fundamentos da teoria da multidão, incluindo muitas, subconjuntos e operações de união e cruzamento. O capítulo 2 aprofunda-se na teoria básica dos números, abrangendo temas como números simples, aritmética modular e equações diofantais. O capítulo 3 explora as tarefas combinatórias, incluindo mudanças, combinações e teoria dos gráficos. Finalmente, o capítulo 4 aborda estruturas álgebricas mais avançadas, como grupos, anéis e campos. Ao longo do livro, o autor ressaltou a importância da compreensão do processo de evolução tecnológica e a necessidade de estabelecer um paradigma pessoal para a percepção do desenvolvimento tecnológico do conhecimento moderno. Este paradigma é essencial para a sobrevivência da humanidade e para a unidade das pessoas num estado em guerra. O texto convida os leitores a abordar a tecnologia com uma atitude crítica, reconhecendo os seus benefícios e limitações.
il libro «zioni pratiche di algebra» (Esercizi pratici in Algebra) è una guida dettagliata per gli studenti delle scuole professionali secondarie che studiano algebra per la prima volta. La guida copre i concetti fondamentali della teoria degli elementi, la teoria dei numeri, la combinazione e le strutture algebriche, fornendo una base solida per ulteriori studi in matematica e informatica. Il libro è suddiviso in diversi capitoli, ognuno dei quali riguarda un aspetto specifico dell'algebra. Il capitolo 1 introduce le basi della teoria di molteplici, tra cui molteplici, sottoinsiemi e operazioni di unione e intersezione. Il capitolo 2 si approfondisce nella teoria elementare dei numeri, trattando argomenti quali numeri semplici, aritmetica modulare e equazioni diofantiche. Il capitolo 3 esamina le attività di combinazione, tra cui riorganizzazioni, combinazioni e teoria dei grafici. Infine, il capitolo 4 affronta strutture algebriche più avanzate, come gruppi, anelli e campi. Durante tutto il libro, l'autore sottolinea l'importanza della comprensione del processo di evoluzione tecnologica e la necessità di sviluppare un paradigma personale per la percezione dello sviluppo tecnologico della conoscenza moderna. Questo paradigma è essenziale per la sopravvivenza dell'umanità e dell'unità delle persone in uno stato in guerra. Il testo invita i lettori ad affrontare la tecnologia con un atteggiamento critico, riconoscendo sia i loro vantaggi che i loro limiti.
Das Buch „Praktische Übungen in Algebra“ ist ein ausführlicher itfaden für Schüler sekundärer Berufsschulen, die zum ersten Mal Algebra lernen. Der itfaden behandelt die grundlegenden Konzepte der Elemententheorie, Zahlentheorie, Kombinatorik und algebraische Strukturen und bietet eine solide Grundlage für die weitere Forschung in Mathematik und Informatik. Das Buch ist in mehrere Kapitel unterteilt, von denen jedes einem bestimmten Aspekt der Algebra gewidmet ist. Kapitel 1 stellt die Grundlagen der Mengenlehre vor, einschließlich Mengen, Teilmengen und Operationen zum Kombinieren und Schneiden. Kapitel 2 vertieft sich in die elementare Zahlentheorie und deckt Themen wie Primzahlen, modulare Arithmetik und diophante Gleichungen ab. Kapitel 3 untersucht kombinatorische Probleme, einschließlich Permutationen, Kombinationen und Graphentheorie. Schließlich befasst sich Kapitel 4 mit fortgeschritteneren algebraischen Strukturen wie Gruppen, Ringen und Feldern. Während des gesamten Buches betont der Autor die Bedeutung des Verständnisses des technologischen Evolutionsprozesses und die Notwendigkeit, ein persönliches Paradigma für die Wahrnehmung der technologischen Entwicklung des modernen Wissens zu entwickeln. Dieses Paradigma ist notwendig für das Überleben der Menschheit und die Einheit der Menschen in einem kriegführenden Staat. Der Text ermutigt die ser, Technologien kritisch anzugehen und sowohl ihre Vorteile als auch ihre Grenzen zu erkennen.
książka „Praktyczne lekcje w Algebra” (Ćwiczenia praktyczne w Algebra) jest szczegółowym przewodnikiem dla średnich studentów zawodowych, którzy studiują algebrę po raz pierwszy. Podręcznik obejmuje podstawowe koncepcje teorii pierwiastków, teorii liczb, kombinatoryki i struktur algebraicznych, stanowiąc solidny fundament dla dalszych badań w matematyce i informatyce. Księga podzielona jest na kilka rozdziałów, z których każdy poświęcony jest konkretnemu aspektowi algebry. Rozdział 1 wprowadza podstawy teorii zbiorów, w tym zbiorów, podzbiorów oraz operacji związków i skrzyżowań. Rozdział 2 zagłębia się w podstawową teorię liczb, obejmującą takie tematy jak prime, modułowe równania arytmetyczne i diofantynowe. Rozdział 3 bada problemy kombinatoryczne, w tym permutacje, kombinacje i teorię wykresu. Wreszcie, rozdział 4 dotyczy bardziej zaawansowanych struktur algebraicznych, takich jak grupy, pierścienie i pola. W książce autor podkreśla znaczenie zrozumienia procesu ewolucji technologicznej oraz potrzebę opracowania osobistego paradygmatu postrzegania rozwoju technologicznego nowoczesnej wiedzy. Paradygmat ten jest niezbędny do przetrwania ludzkości i jedności ludzi w stanie wojennym. Tekst zachęca czytelników do krytycznego podejścia do technologii, uznając jej zalety i ograniczenia.
הספר ”שיעורים מעשיים באלגברה” הוא מדריך מפורט לתלמידים מקצועיים משניים הלומדים אלגברה בפעם הראשונה. המדריך מכסה את המושגים היסודיים של תורת היסודות, תורת המספרים, קומבינטוריקה ומבנים אלגבריים, ומספק בסיס מוצק למחקר נוסף במתמטיקה ובמדעי המחשב. הספר מחולק למספר פרקים, שכל אחד מהם מוקדש להיבט מסוים של אלגברה. פרק 1 מציג את היסודות של תורת הקבוצות, כולל סטים, תת-קבוצות ופעולות של איחוד והצטלבות. פרק 2 מתעמק בתורת המספרים היסודיים, ומכסה נושאים כגון ראשוניים, אריתמטיקה מודולרית ומשוואות דיופנטין. פרק 3 בוחן בעיות קומבינטוריות, כולל פרמוטציות, שילובים ותורת הגרפים. לבסוף, פרק 4 עוסק במבנים אלגבריים מתקדמים יותר כגון קבוצות, טבעות ושדות. לאורך הספר מדגיש המחבר את חשיבות הבנת תהליך האבולוציה הטכנולוגית ואת הצורך לפתח פרדיגמה אישית לתפיסת ההתפתחות הטכנולוגית של הידע המודרני. פרדיגמה זו הכרחית להישרדות האנושות ולאחדות האנשים במדינה לוחמת. הטקסט מעודד את הקוראים לפנות לטכנולוגיה בגישה ביקורתית ולהכיר ביתרונותיה ובמגבלותיו.''
"Cebirde Pratik Dersler" (Cebirde Pratik Alıştırmalar) kitabı, ilk kez cebir okuyan ikincil meslek öğrencileri için ayrıntılı bir kılavuzdur. kitabı, eleman teorisi, sayı teorisi, kombinatorik ve cebirsel yapıların temel kavramlarını kapsar ve matematik ve bilgisayar bilimlerinde daha fazla araştırma için sağlam bir temel sağlar. Kitap, her biri cebirin belirli bir yönüne ayrılmış birkaç bölüme ayrılmıştır. Bölüm 1, kümeler, alt kümeler ve birleşme ve kesişme işlemleri dahil olmak üzere küme teorisinin temellerini tanıtır. Bölüm 2, asal sayılar, modüler aritmetik ve Diophantine denklemleri gibi konuları kapsayan temel sayı teorisine girer. Bölüm 3, permütasyonlar, kombinasyonlar ve grafik teorisi dahil olmak üzere kombinatoryal problemleri inceler. Son olarak, bölüm 4, gruplar, halkalar ve alanlar gibi daha gelişmiş cebirsel yapılarla ilgilenir. Kitap boyunca yazar, teknolojik evrim sürecini anlamanın önemini ve modern bilginin teknolojik gelişiminin algılanması için kişisel bir paradigma geliştirme ihtiyacını vurgulamaktadır. Bu paradigma, insanlığın hayatta kalması ve savaşan bir devlette insanların birliği için gereklidir. Metin, okuyucuları hem avantajlarını hem de sınırlamalarını kabul ederek teknolojiye eleştirel bir tutumla yaklaşmaya teşvik eder.
كتاب «دروس عملية في الجبر» (تمارين عملية في الجبر) هو دليل مفصل لطلاب التعليم المهني الثانوي الذين يدرسون الجبر لأول مرة. يغطي الدليل المفاهيم الأساسية لنظرية العناصر ونظرية الأعداد والتركيبات والهياكل الجبرية، مما يوفر أساسًا صلبًا لمزيد من البحث في الرياضيات وعلوم الكمبيوتر. ينقسم الكتاب إلى عدة فصول، كل منها مخصص لجانب محدد من الجبر. يقدم الفصل 1 أساسيات نظرية المجموعة، بما في ذلك المجموعات والمجموعات الفرعية وعمليات الاتحاد والتقاطع. يتعمق الفصل 2 في نظرية الأعداد الأولية، حيث يغطي موضوعات مثل الأعداد الأولية والحساب المعياري والمعادلات الديوفانتية. يبحث الفصل 3 في المشاكل التوافقية، بما في ذلك التباديل والتركيبات ونظرية الرسم البياني. أخيرًا، يتناول الفصل 4 الهياكل الجبرية الأكثر تقدمًا مثل المجموعات والحلقات والحقول. في جميع أنحاء الكتاب، يؤكد المؤلف على أهمية فهم عملية التطور التكنولوجي والحاجة إلى تطوير نموذج شخصي لتصور التطور التكنولوجي للمعرفة الحديثة. هذا النموذج ضروري لبقاء البشرية ووحدة الناس في دولة متحاربة. يشجع النص القراء على التعامل مع التكنولوجيا بموقف نقدي، مع الاعتراف بمزاياها وقيودها.
"대수의 실제 교훈" (대수의 실제 운동) 이라는 책은 처음으로 대수학을 공부하는 중등 직업 학생들을위한 자세한 안내서입니다. 이 매뉴얼은 요소 이론, 수 이론, 조합론 및 대수 구조의 기본 개념을 다루며 수학 및 컴퓨터 과학에 대한 추가 연구를위한 견고한 토대를 제공합니다. 이 책은 여러 장으로 나뉘며 각 장은 대수의 특정 측면에 전념합니다. 1 장에서는 세트, 서브 세트 및 노조 및 교차 작업을 포함하여 세트 이론의 기본 사항을 소개합니다. 2 장에서는 소수, 모듈 식 산술 및 디오 판틴 방정식과 같은 주제를 다루는 기본 수 이론을 탐구합니다. 3 장에서는 순열, 조합 및 그래프 이론을 포함한 조합 문제를 조사합니다. 마지막으로 4 장에서는 그룹, 링 및 필드와 같은 고급 대수 구조를 다룹니다. 이 책 전체에서 저자는 기술 진화 과정을 이해하는 것의 중요성과 현대 지식의 기술 개발에 대한 인식을위한 개인적인 패러다임을 개발할 필요성을 강조합니다. 이 패러다임은 인류의 생존과 전쟁 상태에있는 사람들의 통일성에 필요합니다. 이 텍스트는 독자들이 장점과 한계를 모두 인식하면서 비판적 태도로 기술에 접근하도록 권장합니
の著書「代数学の実践的教訓」(代数学の実践的演習)は、代数学を初めて学んでいる中等職業学生のための詳細なガイドです。このマニュアルは、要素理論、数論、組合せ論、代数構造の基本的な概念を網羅しており、数学と計算機科学のさらなる研究のための確固たる基礎を提供しています。この本はいくつかの章に分かれており、それぞれが代数の特定の側面に捧げられている。第1章では、集合、サブセット、結合と交差の操作を含む集合理論の基礎を紹介する。第2章では、素数論、モジュラー算術、ディオファンティン方程式などのトピックについて詳しく説明します。第3章では、順列、組み合わせ、グラフ理論などの組み合わせ問題を検討する。最後に、第4章では、群、環、場などのより高度な代数構造を扱う。著者は、本書を通じて、技術進化の過程を理解することの重要性と、現代の知識の技術開発の認識のための個人的なパラダイムを開発する必要性を強調しています。このパラダイムは、人類の存続と戦争状態における人々の団結のために必要です。このテキストは、その利点と限界の両方を認識し、批判的な態度でテクノロジーにアプローチすることを読者に奨励します。
書「代數實踐練習」是對首次學習代數的二級專業教育機構的學生的詳細指導。該指南涵蓋了元素理論,數論,組合學和代數結構的基本概念,為數學和計算機科學領域的進一步研究提供了堅實的基礎。該書分為幾個章節,每個章節都涉及代數的特定方面。第一章介紹了集合論的基礎,包括集合,子集以及合並和相交的運算。第2章深入研究基本數論,涵蓋質數,模塊化算術和雙範式方程等主題。第三章研究組合問題,包括排列,組合和圖論。最後,第四章討論了更先進的代數結構,例如組,環和字段。在整個書中,作者強調了理解技術進化過程的重要性,以及發展對現代知識的技術發展的個人範式的必要性。這種模式對於人類生存和交戰國人民的團結至關重要。文字鼓勵讀者以批判性的態度對待技術,同時認識到它們的優勢和局限性。

You may also be interested in:

Практические занятия по алгебре. Элементы теории множеств, теории чисел, комбинаторики. Алгебраические структуры
Практические занятия по алгебре и теории чисел
Практические занятия по животноводству
Практические занятия по фитодизайну
Практические занятия по диалектологии
Практические занятия по математике
Практические занятия по животноводству
Травматология и ортопедия. Практические занятия
Лекции и практические занятия по математике
Лекции и практические занятия по математике
Химия. Семинарские и практические занятия
Практические занятия по javascript
Общая физика. Оптика. Практические занятия
Практические занятия по менеджменту мастер-класс
Растениеводство лабораторно-практические занятия. 2 книги
Практические занятия по элементарной математике (2-й курс)
Военно-полевая хирургия. Практические занятия
Практические занятия по общему курсу физики
Аналитическая геометрия на плоскости. Практические занятия
Практические занятия по профессии «Повар, кондитер»
Практические работы и семинарские занятия по органической химии
Механика композиционных материалов. Лабораторные работы и практические занятия
Механика композиционных материалов. Лабораторные работы и практические занятия
Практические занятия по математике. Учебное пособие для техникумов
Механика композиционных материалов. Лабораторные работы и практические занятия
Практические занятия по javascript для начинающих
Школьные опыты и практические занятия по курсу анатомии и физиологии человека
Железобетонные и каменные конструкции. Теоретический курс. Практические занятия. Курсовое проектирование
Математика. Опорные конспекты и практические занятия для студентов инженерных специальностей
Железобетонные и каменные конструкции. Теоретический курс. Практические занятия. Курсовое проектирование
Быть услышанным и понятым. Техника и культура речи. Лекции и практические занятия (+CD)
Практические занятия по профессии «Повар, кондитер». Организация и проведение в условиях дуального обучения
Практические занятия по профессии «Повар, кондитер». Организация и проведение в условиях дуального обучения
Таз и промежность женщины. Элементы анатомии и практические упражнения
Условные термы и их применение в алгебре и теории вычислений
Сборник задач по алгебре и теории чисел - Куликов Л.Я. и др.
Сборник задач по алгебре и теории чисел - Шнеперман Л.Б.
Элементы теории времени
Элементы теории чисел
Элементы теории структур