BOOKS - Cracking the Machine Learning Code
Cracking the Machine Learning Code - KC Santosh  PDF  BOOKS
ECO~23 kg CO²

2 TON

Views
9345

Telegram
 
Cracking the Machine Learning Code
Author: KC Santosh
Format: PDF
File size: PDF 31 MB
Language: English



Pay with Telegram STARS
As the world becomes increasingly reliant on technology, it's essential to understand the process of technological evolution and its impact on humanity. In "Cracking the Machine Learning Code the authors provide a comprehensive guide to the field of machine learning, highlighting the need for a personal paradigm for perceiving the technological process of developing modern knowledge as the basis for survival. The book begins by acknowledging the limited scope of applied AI use cases, which typically involve employing off-the-shelf machine learning models in healthcare, finance, autonomous systems, and agriculture. However, the authors emphasize the importance of moving beyond these constraints to tackle real-world problems effectively. They argue that understanding the essence of AI is timeless, and that innovation should focus on model selection, parameter tuning, optimization, pretrained models, transfer learning, feature engineering, autoML, robustness, security, and computational cost-efficiency. To navigate this complex landscape, the authors recommend familiarizing oneself with Python programming language, which is one of the most popular multipurpose programming languages due to its beginner-friendly syntax and vast libraries and frameworks. They then delve into three fundamental data types: numerical, textual, and image data, offering practical insights into their utilization across various domains.
Поскольку мир все больше зависит от технологий, важно понимать процесс технологической эволюции и его влияние на человечество. В «Cracking the Machine arning Code» авторы дают исчерпывающее руководство по области машинного обучения, подчеркивая необходимость личностной парадигмы восприятия технологического процесса развития современных знаний как основы выживания. Книга начинается с признания ограниченного объема прикладных сценариев использования ИИ, которые обычно включают использование готовых моделей машинного обучения в здравоохранении, финансах, автономных системах и сельском хозяйстве. Тем не менее, авторы подчеркивают важность выхода за рамки этих ограничений для эффективного решения реальных проблем. Они утверждают, что понимание сути ИИ не зависит от времени, и что инновации должны быть сосредоточены на выборе моделей, настройке параметров, оптимизации, предварительно обученных моделях, обучении передаче, разработке функций, autoML, надежности, безопасности и вычислительной экономичности. Для навигации по этому сложному ландшафту авторы рекомендуют ознакомиться с языком программирования Python, который является одним из самых популярных многоцелевых языков программирования благодаря удобному для начинающих синтаксису и обширным библиотекам и фреймворкам. Затем они углубляются в три основных типа данных: числовые, текстовые и графические данные, предлагая практическое понимание их использования в различных областях.
Comme le monde dépend de plus en plus de la technologie, il est important de comprendre le processus d'évolution technologique et son impact sur l'humanité. Dans Cracking the Machine arning Code, les auteurs fournissent un guide complet sur le domaine de l'apprentissage automatique, soulignant la nécessité d'un paradigme personnel pour percevoir le processus technologique du développement des connaissances modernes comme base de la survie. livre commence par reconnaître le nombre limité de cas d'utilisation appliquée de l'IA, qui comprennent généralement l'utilisation de modèles d'apprentissage automatique prêts à l'emploi dans les domaines de la santé, de la finance, des systèmes autonomes et de l'agriculture. Cependant, les auteurs soulignent l'importance de dépasser ces limites pour résoudre efficacement les problèmes réels. Ils affirment que la compréhension de l'essence de l'IA ne dépend pas du temps, et que l'innovation doit se concentrer sur le choix des modèles, la configuration des paramètres, l'optimisation, les modèles pré-formés, l'apprentissage de la transmission, le développement de fonctions, l'autoML, la fiabilité, la sécurité et la rentabilité informatique. Pour naviguer dans ce paysage complexe, les auteurs recommandent de se familiariser avec le langage de programmation Python, qui est l'un des langages de programmation polyvalents les plus populaires grâce à une syntaxe conviviale pour les débutants et à de vastes bibliothèques et cadres. Ils examinent ensuite les trois principaux types de données : données numériques, textuelles et graphiques, offrant une compréhension pratique de leur utilisation dans différents domaines.
A medida que el mundo depende cada vez más de la tecnología, es importante comprender el proceso de evolución tecnológica y su impacto en la humanidad. En «Cracking the Machine arning Code», los autores dan una guía exhaustiva sobre el campo del aprendizaje automático, destacando la necesidad de un paradigma personal para percibir el proceso tecnológico del desarrollo del conocimiento moderno como base de la supervivencia. libro comienza con el reconocimiento de un volumen limitado de escenarios de aplicaciones de IA que generalmente incluyen el uso de modelos de aprendizaje automático terminados en salud, finanzas, sistemas autónomos y agricultura. n embargo, los autores subrayan la importancia de ir más allá de estas limitaciones para abordar eficazmente los problemas reales. Afirman que la comprensión de la esencia de la IA no depende del tiempo, y que la innovación debe centrarse en la selección de modelos, la configuración de parámetros, la optimización, los modelos pre-entrenados, el aprendizaje de transferencia, el desarrollo de funciones, el autoML, la confiabilidad, la seguridad y la rentabilidad computacional. Para navegar por este complejo paisaje, los autores recomiendan familiarizarse con el lenguaje de programación Python, que es uno de los lenguajes de programación multipropósito más populares gracias a la sintaxis fácil de usar para principiantes y a las extensas bibliotecas y frameworks. Luego se profundizan en tres tipos básicos de datos: numéricos, textuales y gráficos, ofreciendo una comprensión práctica de su uso en diferentes campos.
Da die Welt zunehmend von Technologie abhängig ist, ist es wichtig, den Prozess der technologischen Evolution und ihre Auswirkungen auf die Menschheit zu verstehen. In Cracking the Machine arning Code geben die Autoren einen umfassenden itfaden für den Bereich des maschinellen rnens und betonen die Notwendigkeit eines persönlichen Paradigmas für die Wahrnehmung des technologischen Prozesses der Entwicklung des modernen Wissens als Grundlage des Überlebens. Das Buch beginnt mit der Anerkennung eines begrenzten Umfangs von Anwendungsfällen für KI, zu denen in der Regel der Einsatz vorgefertigter maschineller rnmodelle in den Bereichen Gesundheitswesen, Finanzen, autonome Systeme und Landwirtschaft gehört. Die Autoren betonen jedoch, wie wichtig es ist, über diese Grenzen hinauszugehen, um echte Probleme effektiv anzugehen. e argumentieren, dass das Verständnis der Essenz von KI zeitlos ist und dass Innovation sich auf die Auswahl von Modellen, Parameteranpassungen, Optimierungen, vortrainierten Modellen, Getriebetraining, Funktionsentwicklung, autoML, Zuverlässigkeit, cherheit und Recheneffizienz konzentrieren sollte. Um durch diese komplexe Landschaft zu navigieren, empfehlen die Autoren, sich mit der Programmiersprache Python vertraut zu machen, die aufgrund ihrer einsteigerfreundlichen Syntax und umfangreichen Bibliotheken und Frameworks eine der beliebtesten Mehrzweck-Programmiersprachen ist. e vertiefen sich dann in drei Hauptdatentypen: numerische, textbasierte und grafische Daten und bieten praktische Einblicke in ihre Verwendung in verschiedenen Bereichen.
''
Dünya giderek daha fazla teknolojiye bağımlı hale geldiğinden, teknolojik evrim sürecini ve insanlık üzerindeki etkisini anlamak önemlidir. "Cracking the Machine arning Code" bölümünde yazarlar, modern bilgiyi geliştirmenin teknolojik sürecini hayatta kalmanın temeli olarak algılamak için kişisel bir paradigmaya duyulan ihtiyacı vurgulayarak, makine öğrenimi alanına kapsamlı bir rehber sunmaktadır. Kitap, tipik olarak hazır makine öğrenme modellerinin sağlık, finans, özerk sistemler ve tarımda kullanılmasını içeren, uygulanan AI kullanım durumlarının sınırlı kapsamını kabul ederek başlıyor. Bununla birlikte, yazarlar gerçek dünyadaki sorunları etkili bir şekilde ele almak için bu sınırlamaların ötesine geçmenin önemini vurgulamaktadır. AI'nın özünü anlamanın zamana bağlı olmadığını ve inovasyonun model seçimi, parametre ayarı, optimizasyon, önceden eğitilmiş modeller, iletim öğrenimi, özellik geliştirme, autoML, güvenilirlik, güvenlik ve hesaplamalı ekonomiye odaklanması gerektiğini savunuyorlar. Bu karmaşık manzarada gezinmek için yazarlar, yeni başlayanlar için uygun sözdizimi ve kapsamlı kütüphaneleri ve çerçeveleri sayesinde en popüler çok amaçlı programlama dillerinden biri olan Python programlama dilini tanımanızı önerir. Daha sonra üç ana veri türüne girerler: sayısal, metinsel ve grafiksel veriler, çeşitli alanlarda kullanımları hakkında pratik bilgiler sunar.
مع تزايد اعتماد العالم على التكنولوجيا، من المهم فهم عملية التطور التكنولوجي وأثرها على البشرية. في «كسر قانون التعلم الآلي»، يقدم المؤلفون دليلًا شاملاً لمجال التعلم الآلي، مؤكدين على الحاجة إلى نموذج شخصي لإدراك العملية التكنولوجية لتطوير المعرفة الحديثة كأساس للبقاء. يبدأ الكتاب بالاعتراف بالنطاق المحدود لحالات استخدام الذكاء الاصطناعي المطبقة، والتي تتضمن عادةً استخدام نماذج التعلم الآلي الجاهزة في الرعاية الصحية والتمويل والأنظمة المستقلة والزراعة. ومع ذلك، يؤكد المؤلفون على أهمية تجاوز هذه القيود لمعالجة قضايا العالم الحقيقي بشكل فعال. يجادلون بأن فهم جوهر الذكاء الاصطناعي لا يعتمد على الوقت، وأن الابتكار يجب أن يركز على اختيار النموذج، وضبط المعلمات، والتحسين، والنماذج المدربة مسبقًا، وتعلم النقل، وتطوير الميزات، و autoML، والموثوقية، والأمن، والاقتصاد الحسابي. للتنقل في هذا المشهد المعقد، يوصي المؤلفون بالتعرف على لغة برمجة Python، وهي واحدة من أشهر لغات البرمجة متعددة الأغراض بفضل بنيتها الصديقة للمبتدئين والمكتبات والأطر الواسعة. ثم يتعمقون في ثلاثة أنواع رئيسية من البيانات: البيانات العددية والنصية والرسومية، مما يوفر رؤى عملية لاستخدامها في مختلف المجالات.

You may also be interested in:

Cracking the Machine Learning Code
Cracking the Machine Learning Code Technicality or Innovation?
Cracking the Machine Learning Code Technicality or Innovation?
Cracking the Machine Learning Code Technicality or Innovation?
Cracking The Machine Learning Interview 225 Machine Learning Interview Questions with Solutions
Python Machine Learning Discover the Essentials of Machine Learning, Data Analysis, Data Science, Data Mining and Artificial Intelligence Using Python Code with Python Tricks
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Low-Code AI: A Practical Project-Driven Introduction to Machine Learning
No-Code AI Concepts and Applications in Machine Learning, Visualization, and Cloud Platforms
No-Code AI Concepts and Applications in Machine Learning, Visualization, and Cloud Platforms
Low-Code AI A Practical Project-Driven Introduction to Machine Learning (Final)
Low-Code AI A Practical Project-Driven Introduction to Machine Learning (Final)
Machine Learning Pocket Reference Working with Structured Data in Python (First Edition) +code
A Primer to the 42 Most commonly used Machine Learning Algorithms (With Code Samples). (Artificial Intelligence Book 1)
No-Code Data Science Mastering Advanced Analytics, Machine Learning, and Artificial Intelligence
No-Code Data Science Mastering Advanced Analytics, Machine Learning, and Artificial Intelligence
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Building Machine Learning Systems Using Python Practice to Train Predictive Models and Analyze Machine Learning Results
Machine Learning in Production: Master the art of delivering robust Machine Learning solutions with MLOps (English Edition)
Machine Learning for Beginners An Introductory Guide to Learn and Understand Artificial Intelligence, Neural Networks and Machine Learning
Machine Learning for Business The Ultimate Artificial Intelligence & Machine Learning for Managers, Team Leaders and Entrepreneurs
Serverless Machine Learning with Amazon Redshift ML: Create, train, and deploy machine learning models using familiar SQL commands
Applied Machine Learning and High-Performance Computing on AWS: Accelerate the development of machine learning applications following architectural best practices
Machine Learning Master Machine Learning Fundamentals for Beginners, Business Leaders and Aspiring Data Scientists
Online Machine Learning: A Practical Guide with Examples in Python (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning for Data Streams with Practical Examples in MOA (Adaptive Computation and Machine Learning series)
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Machine Learning for Beginners Build and deploy Machine Learning systems using Python, 2nd Edition
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning with Core ML 2 and Swift A beginner-friendly guide to integrating machine learning into your apps
Robust Machine Learning: Distributed Methods for Safe AI (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming With Python 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis
Machine Learning for Beginners A Practical Guide to Understanding and Applying Machine Learning Concepts