BOOKS - Deep Neural Networks-Enabled Intelligent Fault Diagnosis of Mechanical System...
Deep Neural Networks-Enabled Intelligent Fault Diagnosis of Mechanical Systems - Ruqiang Yan, Zhibin Zhao 2024 PDF CRC Press BOOKS
ECO~14 kg CO²

1 TON

Views
83086

Telegram
 
Deep Neural Networks-Enabled Intelligent Fault Diagnosis of Mechanical Systems
Author: Ruqiang Yan, Zhibin Zhao
Year: 2024
Pages: 217
Format: PDF
File size: 15.5 MB
Language: ENG



Pay with Telegram STARS
Book Description: In this book, we explore the use of deep neural networks (DNNs) for intelligent fault diagnosis of mechanical systems. The authors present a comprehensive overview of the current state of the art in DNNs and their applications in various fields such as computer vision, natural language processing, and speech recognition. They also delve into the challenges and limitations of using DNNs in these applications and discuss potential solutions to overcome them. The book covers the fundamentals of DNNs, including their architecture, training methods, and performance evaluation metrics. Additionally, it provides case studies on the application of DNNs in real-world scenarios, such as predictive maintenance and health monitoring of machines. The book is divided into four parts: Part I provides an introduction to DNNs and their applications in mechanical systems, while Part II focuses on the challenges and limitations of using DNNs in these applications. Part III explores the use of DNNs in predictive maintenance and health monitoring, and Part IV discusses future directions and opportunities for research in this field. Throughout the book, the authors emphasize the importance of understanding the process of technology evolution and developing a personal paradigm for perceiving the technological process of developing modern knowledge as the basis for the survival of humanity and the survival of the unification of people in a warring state.
В этой книге мы исследуем использование глубоких нейронных сетей (DNN) для интеллектуальной диагностики неисправностей механических систем. Авторы представляют всесторонний обзор современного состояния DNN и их приложений в различных областях, таких как компьютерное зрение, обработка естественного языка и распознавание речи. Они также углубляются в проблемы и ограничения использования DNN в этих приложениях и обсуждают потенциальные решения для их преодоления. Книга охватывает основы DNN, включая их архитектуру, методы обучения и метрики оценки эффективности. Кроме того, он предоставляет тематические исследования по применению DNN в реальных сценариях, таких как прогностическое обслуживание и мониторинг состояния машин. Книга разделена на четыре части: Часть I содержит введение в DNN и их применение в механических системах, в то время как Часть II посвящена проблемам и ограничениям использования DNN в этих приложениях. В части III рассматривается использование DNN в прогностическом обслуживании и мониторинге здоровья, а в части IV обсуждаются будущие направления и возможности для исследований в этой области. На протяжении всей книги авторы подчеркивают важность понимания процесса эволюции технологий и выработки личностной парадигмы восприятия технологического процесса развития современного знания как основы выживания человечества и выживания объединения людей в воюющем государстве.
''

You may also be interested in:

Deep Neural Networks-Enabled Intelligent Fault Diagnosis of Mechanical Systems
Deep Neural Networks-Enabled Intelligent Fault Diagnosis of Mechanical Systems
Deep Neural Networks-Enabled Intelligent Fault Diagnosis of Mechanical Systems
Neural Networks and Deep Learning Neural Networks & Deep Learning, Deep Learning, Big Data
Bayesian Networks in Fault Diagnosis Practice And Application
Neural Network for Beginners Build Deep Neural Networks and Develop Strong Fundamentals using Python’s NumPy and Matplotlib
Python Deep Learning: Understand how deep neural networks work and apply them to real-world tasks
Neural Networks and Deep Learning: A Textbook
New Directions on Hybrid Intelligent Systems Based on Neural Networks, Fuzzy Logic, and Optimization Algorithms
New Directions on Hybrid Intelligent Systems Based on Neural Networks, Fuzzy Logic, and Optimization Algorithms
Practical Mathematics for AI and Deep Learning: A Concise yet In-Depth Guide on Fundamentals of Computer Vision, NLP, Complex Deep Neural Networks and Machine Learning (English Edition)
Evolutionary Deep Learning: Genetic algorithms and neural networks
Demystifying Deep Learning An Introduction to the Mathematics of Neural Networks
Toward Artificial General Intelligence Deep Learning, Neural Networks, Generative AI
Evolutionary Deep Learning Genetic algorithms and neural networks (MEAP)
Toward Artificial General Intelligence Deep Learning, Neural Networks, Generative AI
Introduction to Deep Learning and Neural Networks with Python™ A Practical Guide
Toward Artificial General Intelligence: Deep Learning, Neural Networks, Generative AI
AI Applications to Communications and Information Technologies The Role of Ultra Deep Neural Networks
AI Applications to Communications and Information Technologies The Role of Ultra Deep Neural Networks
Mastering Neural Networks: A Comprehensive Guide to Learn Neural Networks
Hybrid Intelligent Systems Based on Extensions of Fuzzy Logic, Neural Networks and Metaheuristics (Studies in Computational Intelligence Book 1096)
New Directions on Hybrid Intelligent Systems Based on Neural Networks, Fuzzy Logic, and Optimization Algorithms (Studies in Computational Intelligence, 1146)
Artificial Intelligence and Brain Research Neural Networks, Deep Learning and the Future of Cognition
A Beginner|s Guide to Medical Application Development with Deep Convolutional Neural Networks
Artificial Intelligence and Brain Research Neural Networks, Deep Learning and the Future of Cognition
Artificial Intelligence and Brain Research: Neural Networks, Deep Learning and the Future of Cognition
Machine Learning with Neural Networks An In-depth Visual Introduction with Python Make Your Own Neural Network in Python A Simple Guide on Machine Learning with Neural Networks
Applied Deep Learning Design and implement your own Neural Networks to solve real-world problems
Neural Networks for Beginners: Unlock the Secrets of Neural Networks. A Beginner|s Guide to AI|s Most Powerful Tool
Neural Networks for Beginners Unlock the Secrets of Neural Networks. A Beginner|s Guide to AI|s Most Powerful Tool
Neural Networks for Beginners Unlock the Secrets of Neural Networks. A Beginner|s Guide to AI|s Most Powerful Tool
Neural Networks Neural Networks Tools and Techniques for Beginners
Hybrid Intelligent Systems for Pattern Recognition Using Soft Computing: An Evolutionary Approach for Neural Networks and Fuzzy Systems
Fault Diagnosis and Fault-Tolerant Control of Robotic and Autonomous Systems (Control, Robotics and Sensors)
Deep Learning Demystified A Step-by-Step Introduction to Neural Networks
Learning Deep Learning Theory and Practice of Neural Networks, Computer Vision, NLP, and Transformers using TensorFlow
Learning Deep Learning Theory and Practice of Neural Networks, Computer Vision, NLP, and Transformers using TensorFlow (Rough Cuts)
Deep Learning and Convolutional Neural Networks for Medical Image Computing: Precision Medicine, High Performance and Large-Scale Datasets (Advances in Computer Vision and Pattern Recognition)
Artificial Intelligence What You Need to Know About Machine Learning, Robotics, Deep Learning, Recommender Systems, Internet of Things, Neural Networks, Reinforcement Learning, and Our Future