BOOKS - Keras Master Deep Learning with Keras
Keras Master Deep Learning with Keras - Hayden Van Der Post 2024 PDF | EPUB | MOBI Reactive Publishing BOOKS
ECO~23 kg CO²

2 TON

Views
92012

Telegram
 
Keras Master Deep Learning with Keras
Author: Hayden Van Der Post
Year: 2024
Pages: 654
Format: PDF | EPUB | MOBI
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
The book provides a step-by-step approach to building deep learning models using Keras, including data preparation, model architecture, and hyperparameter tuning. The book begins by introducing the concept of deep learning and its importance in today's world. It then delves into the details of Keras, its features, and how it differs from other deep learning frameworks. The book covers the installation of Keras and its integration with TensorFlow and other popular libraries. The next section discusses the fundamentals of deep learning, including the different types of neural networks, activation functions, and optimization techniques. The book then moves on to more advanced topics such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative adversarial networks (GANs). Each topic is explained with practical examples and code snippets to help readers understand the concepts better. The book also covers hyperparameter tuning, regularization techniques, and model evaluation metrics. Finally, the book concludes with a project that demonstrates how to build a real-world deep learning model using Keras.
В книге представлен пошаговый подход к построению моделей глубокого обучения с использованием Keras, включая подготовку данных, архитектуру модели и настройку гиперпараметров. Книга начинается с введения понятия глубокого обучения и его важности в современном мире. Затем он углубляется в детали Keras, его особенности и то, чем он отличается от других фреймворков глубокого обучения. Книга охватывает установку Keras и его интеграцию с TensorFlow и другими популярными библиотеками. В следующем разделе обсуждаются основы глубокого обучения, включая различные типы нейронных сетей, функции активации и методы оптимизации. Затем книга переходит к более продвинутым темам, таким как сверточные нейронные сети (CNN), рекуррентные нейронные сети (RNN) и генеративные состязательные сети (GAN). Каждая тема объясняется практическими примерами и фрагментами кода, чтобы помочь читателям лучше понять понятия. Книга также охватывает настройку гиперпараметров, методы регуляризации и метрики оценки модели. Наконец, книга завершается проектом, который демонстрирует, как построить реальную модель глубокого обучения с помощью Keras.
''

You may also be interested in:

Keras Master Deep Learning with Keras
Keras Master Deep Learning with Keras
Keras: Master Deep Learning with Keras
Deep Learning With Python Develop Deep Learning Models on Theano and TensorFlow using Keras
Deep Learning with Python The Crash Course for Beginners to Learn the Basics of Deep Learning with Python Using TensorFlow, Keras and PyTorch
First contact with Deep Learning Practical introduction with Keras
Beginning with Deep Learning Using TensorFlow A Beginners Guide to TensorFlow and Keras for Practicing Deep Learning Principle
Probabilistic Deep Learning With Python, Keras and TensorFlow Probability (Final)
Learn AI with Python: Explore Machine Learning and Deep Learning techniques for Building Smart AI Systems Using Scikit-Learn, NLTK, NeuroLab, and Keras
Deep Learning and AI Superhero Mastering TensorFlow, Keras, and PyTorch Advanced Machine Learning and AI, Neural Networks, and Real-World Projects (Mastering the AI Revolution)
The Keras Genome (Keras Demigods Book 1)
Python Deep learning Develop your first Neural Network in Python Using TensorFlow, Keras, and PyTorch
Programming With Python 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Practical Deep Learning for Cloud, Mobile, and Edge Real-World AI & Computer-Vision Projects Using Python, Keras & TensorFlow, First Edition
Hands-On Q-Learning with Python: Practical Q-learning with OpenAI Gym, Keras, and TensorFlow
Keras to Kubernetes The Journey of a Machine Learning Model to Production
Applied Reinforcement Learning with Python: With OpenAI Gym, Tensorflow, and Keras
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition
Neural Networks with Tensorflow and Keras Training, Generative Models, and Reinforcement Learning
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition (Early Release)
Hacker|s Guide to Machine Learning with Python Hands-on guide to solving real-world Machine Learning problems with Scikit-Learn, TensorFlow 2, and Keras
Python Machine Learning Is The Complete Guide To Everything You Need To Know About Python Machine Learning Keras, Numpy, Scikit Learn, Tensorflow, With Useful Exercises and examples
Python Machine Learning Understand Python Libraries (Keras, NumPy, Scikit-lear, TensorFlow) for Implementing Machine Learning Models in Order to Build Intelligent Systems
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow Concepts, Tools, and Techniques to Build Intelligent Systems Second Edition (Third Release)
Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow Concepts, Tools, and Techniques to Build Intelligent Systems Second Edition (Early Release)
Python Machine Learning: Everything You Should Know About Python Machine Learning Including Scikit Learn, Numpy, PyTorch, Keras And Tensorflow With Step-By-Step Examples And PRACTICAL Exercises
Python For Data Analysis A Step By Step Guide To Build Intelligent System Machine Learning, Scikit-Learn, Keras And Tensorflow
Mastering Deep Learning A Comprehensive Guide to Master Deep Learning
Mastering Deep Learning: A Comprehensive Guide to Master Deep Learning
Mastering Deep Learning A Comprehensive Guide to Master Deep Learning
Библиотека Keras - инструмент глубокого обучения
Библиотека Keras - инструмент глубокого обучения
Искусственный интеллект и компьютерное зрение. Реальные проекты на Python, Keras и TensorFlow
Прикладное машинное обучение с помощью Scikit-Learn, Keras и TensorFlow 2-е издание
STROKE: Analysis and Prediction Using Scikit-Learn, Keras, and TensorFlow with Python GUI
Stroke Analysis and Prediction Using Scikit-Learn, Keras, and TensorFlow with Python GUI, Second Edition
Python for Natural Language Processing Programming with NumPy, Scikit-learn, Keras, and PyTorch, 3rd Edition
Data Science from Scratch with Python Concepts and Practices with NumPy, Pandas, Matplotlib, Scikit-Learn and Keras
Python for Natural Language Processing Programming with NumPy, Scikit-learn, Keras, and PyTorch, 3rd Edition
Neural Networks with Python Design CNNs, Transformers, GANs and capsule networks using Tensorflow and Keras