BOOKS - AI and Data Engineering Solutions for Effective Marketing
AI and Data Engineering Solutions for Effective Marketing - Lhoussaine Alla, Aziz Hmioui, Badr Bentalha 2024 PDF | EPUB IGI Global BOOKS
ECO~19 kg CO²

2 TON

Views
5584

Telegram
 
AI and Data Engineering Solutions for Effective Marketing
Author: Lhoussaine Alla, Aziz Hmioui, Badr Bentalha
Year: 2024
Pages: 520
Format: PDF | EPUB
File size: 26.4 MB
Language: ENG



Pay with Telegram STARS
The book "AI and Data Engineering Solutions for Effective Marketing" provides a comprehensive overview of the current state of artificial intelligence (AI) and data engineering solutions in marketing, highlighting their potential benefits and challenges. It covers topics such as machine learning, natural language processing, computer vision, and predictive analytics, and how they can be applied to various marketing strategies. The book also explores the ethical implications of using AI and data engineering in marketing, including privacy concerns and biases. The book begins by discussing the history and development of AI and data engineering, from their early beginnings to the present day. It then delves into the various applications of AI and data engineering in marketing, including personalization, segmentation, and customer profiling. The book also examines the role of AI in content creation, social media monitoring, and influencer marketing. One of the key themes of the book is the need for marketers to understand the technological process of developing modern knowledge and its impact on society. The author argues that this understanding is essential for effective marketing and for ensuring that AI and data engineering are used responsibly and ethically. The book emphasizes the importance of developing a personal paradigm for perceiving the technological process of developing modern knowledge, which can help individuals and organizations navigate the rapidly changing landscape of technology and marketing.
Книга «Решения для искусственного интеллекта и инженерии данных для эффективного маркетинга» содержит всесторонний обзор текущего состояния искусственного интеллекта (ИИ) и решений для инженерии данных в маркетинге, подчеркивая их потенциальные преимущества и проблемы. Он охватывает такие темы, как машинное обучение, обработка естественного языка, компьютерное зрение и предиктивная аналитика, а также то, как их можно применить к различным маркетинговым стратегиям. В книге также рассматриваются этические последствия использования ИИ и инженерии данных в маркетинге, включая проблемы конфиденциальности и предубеждения. Книга начинается с обсуждения истории и развития ИИ и инженерии данных, от их раннего начала до наших дней. Затем он углубляется в различные приложения искусственного интеллекта и инженерии данных в маркетинге, включая персонализацию, сегментацию и профилирование клиентов. В книге также рассматривается роль ИИ в создании контента, мониторинге социальных сетей и маркетинге влияния. Одна из ключевых тем книги - необходимость понимания маркетологами технологического процесса развития современного знания и его влияния на общество. Автор утверждает, что это понимание имеет важное значение для эффективного маркетинга и для обеспечения того, чтобы ИИ и инженерия данных использовались ответственно и этично. В книге подчеркивается важность выработки личностной парадигмы восприятия технологического процесса развития современных знаний, которая может помочь отдельным лицам и организациям ориентироваться в быстро меняющемся ландшафте технологий и маркетинга.
''

You may also be interested in:

AI and Data Engineering Solutions for Effective Marketing
AI and Data Engineering Solutions for Effective Marketing
Ultimate AWS Data Engineering Design, Implement and Optimize Scalable Data Solutions on AWS with Practical Workflows and Visual Aids for Unmatched Impact
Ultimate Data Engineering with Databricks Develop Scalable Data Pipelines Using Data Engineering|s Core Tenets Such as Delta Tables, Ingestion, Transformation, Security, and Scalability
Ultimate Data Engineering with Databricks Develop Scalable Data Pipelines Using Data Engineering|s Core Tenets Such as Delta Tables, Ingestion, Transformation, Security, and Scalability
Ultimate Azure Data Engineering Build Robust Data Engineering Systems on Azure with SQL, ETL, Data Modeling, and Power BI for Business Insights and Crack Azure Certifications
Ultimate Azure Data Engineering Build Robust Data Engineering Systems on Azure with SQL, ETL, Data Modeling, and Power BI for Business Insights and Crack Azure Certifications
Data Engineering Design Patterns Recipes for Solving the Most Common Data Engineering Problems (3rd Early Release)
Data Engineering Design Patterns Recipes for Solving the Most Common Data Engineering Problems (3rd Early Release)
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Advanced Data Analytics with AWS Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources
Advanced Data Analytics with AWS: Explore Data Analysis Concepts in the Cloud to Gain Meaningful Insights and Build Robust Data Engineering Workflows Across Diverse Data Sources (English Edition)
Azure Data Engineering Cookbook: Get well versed in various data engineering techniques in Azure using this recipe-based guide, 2nd Edition
Getting Started with DuckDB: A practical guide for accelerating your data science, data analytics, and data engineering workflows
Foundations for Architecting Data Solutions Managing Successful Data Projects
Qlik Sense: Advanced Data Visualization for Your Organization: Create smart data visualizations and predictive analytics solutions
Practical Data Science with Jupyter Explore Data Cleaning, Pre-processing, Data Wrangling, Feature Engineering and Machine Learning using Python and Jupyter
Data in Context: Models as Enablers for Managing and Using Data (The Enterprise Engineering Series)
Data Engineering with AWS: A Comprehensive Guide to Building Robust Data Pipelines
Data Quality Engineering in Financial Services Applying Manufacturing Techniques to Data
Fundamentals of Data Engineering: Plan and Build Robust Data Systems
Azure Data and AI Architect Handbook: Adopt a structured approach to designing data and AI solutions at scale on Microsoft Azure
Hands on Azure Data Studio Microsoft|s Open Platform for Data Engineering and Analytics
Intelligent Data Analysis for Biomedical Applications Challenges and Solutions (Intelligent Data-Centric Systems Sensor Collected Intelligence)
Cloud Data Architectures Demystified Gain the expertise to build Cloud data solutions as per the organization|s needs
Modern Data Architecture on Azure: Design Data-centric Solutions on Microsoft Azure
Modern Data Architecture on Azure Design Data-centric Solutions on Microsoft Azure
Fundamentals of Data Observability Implement Trustworthy End-to-End Data Solutions (Final)
Modern Data Architecture on Azure Design Data-centric Solutions on Microsoft Azure
Data Engineering with dbt: A practical guide to building a cloud-based, pragmatic, and dependable data platform with SQL
Proceedings of Data Analytics and Management: ICDAM 2021, Volume 1 (Lecture Notes on Data Engineering and Communications Technologies, 90)
Azure Data Engineer Associate Certification Guide: Ace the DP-203 exam with advanced data engineering skills
Supervised and Unsupervised Data Engineering for Multimedia Data
Data Engineering and Data Science: Concepts and Applications
Data Engineering and Data Science Concepts and Applications
Supervised and Unsupervised Data Engineering for Multimedia Data
Supervised and Unsupervised Data Engineering for Multimedia Data
Fundamentals of Data Observability: Implement Trustworthy End-to-End Data Solutions
Data-Centric Machine Learning with Python: The ultimate guide to engineering and deploying high-quality models based on good data
Engineering Solutions for Droughts