BOOKS - Deep Generative Modeling, 2nd Edition
Deep Generative Modeling, 2nd Edition - Jakub M. Tomczak 2024 PDF | EPUB Springer BOOKS
ECO~15 kg CO²

1 TON

Views
29457

Telegram
 
Deep Generative Modeling, 2nd Edition
Author: Jakub M. Tomczak
Year: 2024
Pages: 325
Format: PDF | EPUB
File size: 50.2 MB
Language: ENG



Pay with Telegram STARS
DEEP GENERATIVE MODELING 2ND EDITION A Comprehensive Introduction The second edition of Deep Generative Modeling is a comprehensive introduction to generative models, which are a class of machine learning algorithms that learn to represent and generate data distributions. The book covers the fundamentals of generative modeling, including the basics of probability theory, linear algebra, and neural networks, as well as more advanced topics such as variational inference, normalizing flows, and adversarial training. It also discusses the challenges of deep generative modeling, such as mode collapse and vanishing gradients, and provides practical tips for addressing these issues. The book is divided into four parts: Part I: Basics of Probability Theory and Generative Models This part introduces the reader to the basics of probability theory and generative models, including Bayesian inference and the concept of latent variables. It also covers the basic tools and techniques used in deep generative modeling, such as Markov chains, Gaussian processes, and variational inference. Part II: Neural Networks and Deep Learning In this part, the authors delve into the details of neural networks and their application to deep generative modeling. They cover the basics of neural networks, including the multilayer perceptron, backpropagation, and activation functions, as well as more advanced topics such as convolutional neural networks and recurrent neural networks.
DEEP GENERATIVE MODELING 2ND EDITION A Comprehensive Introduction Второе издание Deep Generative Modeling представляет собой комплексное введение в генеративные модели, представляющие собой класс алгоритмов машинного обучения, которые учатся представлять и генерировать распределения данных. Книга охватывает основы генеративного моделирования, включая основы теории вероятностей, линейной алгебры и нейронных сетей, а также более продвинутые темы, такие как вариационный вывод, нормализация потоков и состязательное обучение. В нем также обсуждаются проблемы глубокого генеративного моделирования, такие как сворачивание режимов и градиенты схода, и даются практические советы по решению этих проблем. Книга разделена на четыре части: Часть I: Основы теории вероятностей и генеративные модели Эта часть знакомит читателя с основами теории вероятностей и генеративными моделями, включая байесовский вывод и концепцию латентных переменных. Он также охватывает основные инструменты и методы, используемые в глубоком генеративном моделировании, такие как цепи Маркова, гауссовы процессы и вариационный вывод. Часть II: Нейронные сети и глубокое обучение В этой части авторы углубляются в детали нейронных сетей и их применение к глубокому генеративному моделированию. Они охватывают основы нейронных сетей, включая многослойный перцептрон, обратное распространение и функции активации, а также более продвинутые темы, такие как сверточные нейронные сети и рекуррентные нейронные сети.
''

You may also be interested in:

Deep Generative Modeling, 2nd Edition
Deep Generative Modeling, 2nd Edition
A Generative Journey to AI Mastering the foundations and frontiers of generative deep learning
Generative Deep Learning, 2nd Edition (Early Release)
Generative Deep Learning Teaching Machines to Paint, Write, Compose, and Play First Edition
Generative Deep Learning with Python Unleashing the Creative Power of AI
GANs in Action Deep learning with Generative Adversarial Networks
Generative Deep Learning with Python Unleashing the Creative Power of AI
Kleine generative Syntax des Deutschen: I. Traditionelle Syntax und generative Syntaxtheorie (Germanistische Arbeitshefte, 11) (German Edition)
Toward Artificial General Intelligence Deep Learning, Neural Networks, Generative AI
Toward Artificial General Intelligence Deep Learning, Neural Networks, Generative AI
Toward Artificial General Intelligence: Deep Learning, Neural Networks, Generative AI
Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play
Generative Deep Learning Teaching Machines to Paint, Write, Compose and Play
Fundamentals of Algebraic Modeling An Introduction to Mathematical Modeling with Algebra and Statistics, Fifth Edition
Deep Dive Into the Power Platform in the Age of Generative AI Architectural Insights and Best Practices for Intelligent Business Solutions
Deep Learning Through Sparse and Low-Rank Modeling
Modern Deep Learning for Tabular Data: Novel Approaches to Common Modeling Problems
Generative Deep Learning with Python: Unleashing the Creative Power of AI (Mastering AI and Python)
Generative AI with Python Harnessing The Power Of Machine Learning And Deep Learning To Build Creative And Intelligent Systems
Optimizing Generative AI Workloads for Sustainability Balancing Performance and Environmental Impact in Generative AI
Optimizing Generative AI Workloads for Sustainability Balancing Performance and Environmental Impact in Generative AI
Generative Analysis: The Power of Generative AI for Object-Oriented Software Engineering with UML
Generative AI and LLMs Natural Language Processing and Generative Adversarial Networks
Generative AI and LLMs Natural Language Processing and Generative Adversarial Networks
Generative Analysis The Power of Generative AI for Object-Oriented Software Engineering with UML (Early Release)
Generative AI in Practice 100+ Amazing Ways Generative Artificial Intelligence is Changing Business and Society
Generative AI in Practice: 100+ Amazing Ways Generative Artificial Intelligence is Changing Business and Society
Generative Analysis The Power of Generative AI for Object-Oriented Software Engineering with UML (Early Release)
Generative Artificial Intelligence Exploring the Power and Potential of Generative AI
Generative Artificial Intelligence Exploring the Power and Potential of Generative AI
Risk Modeling Practical Applications of Artificial Intelligence, Machine Learning, and Deep Learning
Building Generative AI Services with FastAPI A Practical Approach to Developing Context Rich Generative AI Applications (Second Early Release)
Building Generative AI Services with FastAPI A Practical Approach to Developing Context Rich Generative AI Applications (Second Early Release)
Enterprise GENERATIVE AI Well Architected Framework and Patterns: An Architect|s Real-life Guide to Adopting Generative AI in Enterprises at Scale
Building Generative AI Services with FastAPI A Practical Approach to Developing Context Rich Generative AI Applications (5th Early Release)
Enterprise Generative AI Well Architected Framework & Patterns An Architect|s Real-life Guide to Adopting Generative AI in Enterprises at Scale
Enterprise Generative AI Well Architected Framework & Patterns An Architect|s Real-life Guide to Adopting Generative AI in Enterprises at Scale
Deep Learning for Data Architects: Unleash the power of Python|s deep learning algorithms (English Edition)
Deep Learning for the Life Sciences Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More First Edition