
BOOKS - Introduction to Classifier Performance Analysis with R

Introduction to Classifier Performance Analysis with R
Author: Sutaip L.C. Saw
Year: 2025
Pages: 222
Format: PDF | EPUB
File size: 10.1 MB
Language: ENG

Year: 2025
Pages: 222
Format: PDF | EPUB
File size: 10.1 MB
Language: ENG

Book Description: 'Introduction to Classifier Performance Analysis with R' is a comprehensive guide to understanding the performance of classifiers in machine learning. The book covers the fundamental concepts of classifier evaluation, the importance of accuracy, precision, recall, F1-score, and AUC-ROC. It also delves into more advanced topics such as confusion matrix, ROC curve, and LDA. With practical examples and exercises, this book provides readers with a solid foundation in classifier performance analysis using R. Long Description of the Plot: In a world where technology is rapidly evolving, it is crucial to understand the process of technological advancements and its impact on human society. As machines become more intelligent and autonomous, the need for a personal paradigm for perceiving the technological process of developing modern knowledge becomes increasingly important. This paradigm can serve as the basis for the survival of humanity and the unification of people in a warring state. The book 'Introduction to Classifier Performance Analysis with R' serves as a guide for readers to develop this personal paradigm. It begins by covering the fundamental concepts of classifier evaluation, including accuracy, precision, recall, F1-score, and AUC-ROC. These concepts are essential for understanding the performance of classifiers and making informed decisions about their use in various applications. As readers progress through the book, they will learn about more advanced topics such as confusion matrix, ROC curve, and LDA. These topics provide a deeper understanding of classifier performance analysis and enable readers to evaluate classifiers with greater precision. The practical examples and exercises throughout the book allow readers to apply their newfound knowledge and gain hands-on experience with R programming language.
«Введение в анализ производительности классификатора с R» - это всеобъемлющее руководство по пониманию производительности классификаторов в машинном обучении. Книга охватывает фундаментальные концепции оценки классификатора, важность точности, прецизионности, отзыва, F1-score и AUC-ROC. Он также углубляется в более продвинутые темы, такие как матрица путаницы, кривая ROC и LDA. Благодаря практическим примерам и упражнениям эта книга предоставляет читателям прочную основу для анализа эффективности классификатора с использованием R. Long Description of the Plot: В мире, где технологии быстро развиваются, крайне важно понимать процесс технологических достижений и его влияние на человеческое общество. По мере того, как машины становятся все более интеллектуальными и автономными, все большее значение приобретает потребность в персональной парадигме восприятия технологического процесса развития современных знаний. Эта парадигма может служить основой для выживания человечества и объединения людей в воюющем государстве. Книга «Введение в анализ эффективности классификатора с R» служит для читателей руководством по разработке этой личной парадигмы. Он начинается с охвата фундаментальных концепций оценки классификатора, включая точность, прецизионность, отзыв, F1-score и AUC-ROC. Эти понятия необходимы для понимания производительности классификаторов и принятия обоснованных решений об их использовании в различных приложениях. По мере прохождения книги читатели узнают о более сложных темах, таких как матрица путаницы, кривая ROC и LDA. Эти разделы обеспечивают более глубокое понимание анализа производительности классификаторов и позволяют читателям оценивать классификаторы с большей точностью. Практические примеры и упражнения на протяжении всей книги позволяют читателям применить свои новообретенные знания и получить практический опыт работы с языком программирования R.
«Introduzione all'analisi delle prestazioni del classificatore con R» è una guida completa per comprendere le prestazioni dei classificatori nell'apprendimento automatico. Il libro comprende i concetti fondamentali per la valutazione del classificatore, l'importanza della precisione, precisione, richiamo, f1-score e AUC-ROC. approfondisce anche su temi più avanzati come la matrice di confusione, la curva ROC e LDA. Con esempi e esercizi pratici, questo libro fornisce ai lettori una solida base per analizzare l'efficacia del classificatore utilizzando R. Long Descrizione of the Plot: in un mondo in cui la tecnologia si sviluppa rapidamente, è fondamentale comprendere il processo di avanzamento tecnologico e il suo impatto sulla società umana. Mentre le macchine diventano sempre più intelligenti e autonome, diventa sempre più importante il bisogno di un paradigma personale della percezione del processo tecnologico dello sviluppo della conoscenza moderna. Questo paradigma può essere la base per la sopravvivenza dell'umanità e per l'unione delle persone in uno stato in guerra. Il libro «Introduzione all'analisi dell'efficacia del classificatore con R» fornisce ai lettori una guida per lo sviluppo di questo paradigma personale. Inizia con la copertura dei concetti fondamentali di valutazione del classificatore, tra cui precisione, precisione, recensione, F1-score e AUC-ROC. Questi concetti sono necessari per comprendere le prestazioni dei classificatori e prendere decisioni giustificate sul loro utilizzo in diverse applicazioni. Man mano che il libro passa, i lettori scopriranno argomenti più complessi come la matrice di confusione, la curva ROC e LDA. Queste sezioni forniscono una migliore comprensione dell'analisi delle prestazioni dei classificatori e consentono ai lettori di valutare i classificatori con maggiore precisione. Esempi pratici e esercizi lungo tutto il libro permettono ai lettori di applicare le loro nuove conoscenze e acquisire esperienza pratica con il linguaggio di programmazione R.
''
