BOOKS - Introduction to Classifier Performance Analysis with R
Introduction to Classifier Performance Analysis with R - Sutaip L.C. Saw 2025 PDF | EPUB CRC Press BOOKS
ECO~14 kg CO²

1 TON

Views
2477

Telegram
 
Introduction to Classifier Performance Analysis with R
Author: Sutaip L.C. Saw
Year: 2025
Pages: 222
Format: PDF | EPUB
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
Book Description: 'Introduction to Classifier Performance Analysis with R' is a comprehensive guide to understanding the performance of classifiers in machine learning. The book covers the fundamental concepts of classifier evaluation, the importance of accuracy, precision, recall, F1-score, and AUC-ROC. It also delves into more advanced topics such as confusion matrix, ROC curve, and LDA. With practical examples and exercises, this book provides readers with a solid foundation in classifier performance analysis using R. Long Description of the Plot: In a world where technology is rapidly evolving, it is crucial to understand the process of technological advancements and its impact on human society. As machines become more intelligent and autonomous, the need for a personal paradigm for perceiving the technological process of developing modern knowledge becomes increasingly important. This paradigm can serve as the basis for the survival of humanity and the unification of people in a warring state. The book 'Introduction to Classifier Performance Analysis with R' serves as a guide for readers to develop this personal paradigm. It begins by covering the fundamental concepts of classifier evaluation, including accuracy, precision, recall, F1-score, and AUC-ROC. These concepts are essential for understanding the performance of classifiers and making informed decisions about their use in various applications. As readers progress through the book, they will learn about more advanced topics such as confusion matrix, ROC curve, and LDA. These topics provide a deeper understanding of classifier performance analysis and enable readers to evaluate classifiers with greater precision. The practical examples and exercises throughout the book allow readers to apply their newfound knowledge and gain hands-on experience with R programming language.
«Введение в анализ производительности классификатора с R» - это всеобъемлющее руководство по пониманию производительности классификаторов в машинном обучении. Книга охватывает фундаментальные концепции оценки классификатора, важность точности, прецизионности, отзыва, F1-score и AUC-ROC. Он также углубляется в более продвинутые темы, такие как матрица путаницы, кривая ROC и LDA. Благодаря практическим примерам и упражнениям эта книга предоставляет читателям прочную основу для анализа эффективности классификатора с использованием R. Long Description of the Plot: В мире, где технологии быстро развиваются, крайне важно понимать процесс технологических достижений и его влияние на человеческое общество. По мере того, как машины становятся все более интеллектуальными и автономными, все большее значение приобретает потребность в персональной парадигме восприятия технологического процесса развития современных знаний. Эта парадигма может служить основой для выживания человечества и объединения людей в воюющем государстве. Книга «Введение в анализ эффективности классификатора с R» служит для читателей руководством по разработке этой личной парадигмы. Он начинается с охвата фундаментальных концепций оценки классификатора, включая точность, прецизионность, отзыв, F1-score и AUC-ROC. Эти понятия необходимы для понимания производительности классификаторов и принятия обоснованных решений об их использовании в различных приложениях. По мере прохождения книги читатели узнают о более сложных темах, таких как матрица путаницы, кривая ROC и LDA. Эти разделы обеспечивают более глубокое понимание анализа производительности классификаторов и позволяют читателям оценивать классификаторы с большей точностью. Практические примеры и упражнения на протяжении всей книги позволяют читателям применить свои новообретенные знания и получить практический опыт работы с языком программирования R.
«Introduzione all'analisi delle prestazioni del classificatore con R» è una guida completa per comprendere le prestazioni dei classificatori nell'apprendimento automatico. Il libro comprende i concetti fondamentali per la valutazione del classificatore, l'importanza della precisione, precisione, richiamo, f1-score e AUC-ROC. approfondisce anche su temi più avanzati come la matrice di confusione, la curva ROC e LDA. Con esempi e esercizi pratici, questo libro fornisce ai lettori una solida base per analizzare l'efficacia del classificatore utilizzando R. Long Descrizione of the Plot: in un mondo in cui la tecnologia si sviluppa rapidamente, è fondamentale comprendere il processo di avanzamento tecnologico e il suo impatto sulla società umana. Mentre le macchine diventano sempre più intelligenti e autonome, diventa sempre più importante il bisogno di un paradigma personale della percezione del processo tecnologico dello sviluppo della conoscenza moderna. Questo paradigma può essere la base per la sopravvivenza dell'umanità e per l'unione delle persone in uno stato in guerra. Il libro «Introduzione all'analisi dell'efficacia del classificatore con R» fornisce ai lettori una guida per lo sviluppo di questo paradigma personale. Inizia con la copertura dei concetti fondamentali di valutazione del classificatore, tra cui precisione, precisione, recensione, F1-score e AUC-ROC. Questi concetti sono necessari per comprendere le prestazioni dei classificatori e prendere decisioni giustificate sul loro utilizzo in diverse applicazioni. Man mano che il libro passa, i lettori scopriranno argomenti più complessi come la matrice di confusione, la curva ROC e LDA. Queste sezioni forniscono una migliore comprensione dell'analisi delle prestazioni dei classificatori e consentono ai lettori di valutare i classificatori con maggiore precisione. Esempi pratici e esercizi lungo tutto il libro permettono ai lettori di applicare le loro nuove conoscenze e acquisire esperienza pratica con il linguaggio di programmazione R.
''

You may also be interested in:

Introduction to Classifier Performance Analysis with R
Introduction to Classifier Performance Analysis with R
Functional Analysis: Introduction to Further Topics in Analysis (Princeton Lectures in Analysis, 4)
Data Envelopment Analysis with GAMS: A Handbook on Productivity Analysis and Performance Measurement (International Series in Operations Research and Management Science, 338)
Analysis with an Introduction to Proof (Featured Titles for Real Analysis) by Steven R. Lay (2012-12-22)
Basic Analysis II: Introduction to Real Analysis, Volume II
Performance Analysis of Parallel Applications for HPC
Metaheuristic Algorithms New Methods, Evaluation, and Performance Analysis
Mobile Networks Concepts, Applications and Performance Analysis
Metaheuristic Algorithms New Methods, Evaluation, and Performance Analysis
Performance Analysis of Cooperative Networking with Multi Channels
Discrete Networked Dynamic Systems Analysis and Performance
Performance Analysis of Cooperative Networking with Multi Channels
Performance Analysis of Cooperative Networking with Multi Channels
Financial Planning and Analysis and Performance Management (Wiley Finance)
Linux Observability with BPF Advanced Programming for Performance Analysis and Networking First Edition
CUDA for Engineers An Introduction to High-Performance Parallel Computing
Introduction to High Performance Scientific Computing, 2nd edition
Quantitative Analysis of Cognitive Radio and Network Performance (Artech House Mobile Communications)
Linux Observability with BPF Advanced Programming for Performance Analysis and Networking (Early Release)
Modern Distributed Tracing in .NET: A practical guide to observability and performance analysis for microservices
Processes of Governance Across Multiple Stakeholders - Performance, Control and Innovation - An Introduction
Introduction to Engineering Analysis
An Introduction to Analysis, Third Edition
An Introduction to Vector Analysis
Introduction to Mathematical Analysis
An Introduction to Combinatorial Analysis
Introduction to Multivariate Analysis
Discourse Analysis: An Introduction
Introduction to Game Analysis
Multivariable Analysis: An Introduction
Alternative Liquid Dielectrics for High Voltage Transformer Insulation Systems Performance Analysis and Applications
Introduction to Calculus and Analysis: Volume I
An Introduction to Numerical Methods and Analysis
Mathematical Analysis A Concise Introduction
Introduction to Functional Data Analysis
Introduction to Electrical Circuit Analysis
C Programming and Numerical Analysis An Introduction
Literature: An Introduction to Theory and Analysis
Introduction to Multimodal Analysis : Second Edition