BOOKS - Mathematics for Data Science Linear Algebra with Matlab
Mathematics for Data Science Linear Algebra with Matlab - Cesar Perez Lopez 2025 PDF | EPUB Scientific Books BOOKS
ECO~18 kg CO²

1 TON

Views
41890

Telegram
 
Mathematics for Data Science Linear Algebra with Matlab
Author: Cesar Perez Lopez
Year: 2025
Pages: 447
Format: PDF | EPUB
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
Jacobs. The book "Mathematics for Data Science Linear Algebra with Matlab" by Steve H. Jacobs provides a comprehensive introduction to linear algebra and its applications in data science using MATLAB. The book covers topics such as vector spaces, linear transformations, eigenvalues and eigenvectors, diagonalization, and singular value decomposition. It also discusses the use of these concepts in machine learning, computer vision, and other areas of data science. The author emphasizes the importance of understanding the underlying mathematical principles of data science techniques and provides practical examples and exercises to help readers apply their knowledge. The book begins by introducing the concept of vectors and vector operations, including dot products, cross products, and norms. It then moves on to cover linear transformations and matrices, including matrix multiplication, inverse matrices, and determinants. The author also discusses the concept of eigenvalues and eigenvectors, which are used to diagonalize matrices and solve systems of linear equations. One of the key themes of the book is the idea that linear algebra is essential for data science, as it provides the mathematical foundation for many of the techniques used in the field. The author argues that without a solid understanding of linear algebra, it is impossible to fully understand the underlying principles of data science. He also emphasizes the importance of using MATLAB to perform computations and visualize results, as it is a powerful tool for working with matrices and vectors.
Jacobs. В книге «Mathematics for Data Science Linear Algebra with Matlab» Стива Х. Джейкобса (Steve H. Jacobs) представлено всестороннее введение в линейную алгебру и её приложения в науке о данных с использованием MATLAB. Книга охватывает такие темы, как векторные пространства, линейные преобразования, собственные значения и собственные векторы, диагонализация и декомпозиция сингулярных значений. Также обсуждается использование этих понятий в машинном обучении, компьютерном зрении и других областях науки о данных. Автор подчеркивает важность понимания основных математических принципов методов науки о данных и приводит практические примеры и упражнения, чтобы помочь читателям применить свои знания. Книга начинается с введения понятия векторов и векторных операций, включая скалярные произведения, перекрестные произведения и нормы. Затем он переходит к линейным преобразованиям и матрицам, включая умножение матриц, обратные матрицы и детерминанты. Автор также обсуждает понятие собственных значений и собственных векторов, которые используются для диагонализации матриц и решения систем линейных уравнений. Одной из ключевых тем книги является идея о том, что линейная алгебра имеет важное значение для науки о данных, поскольку она обеспечивает математическую основу для многих методов, используемых в этой области. Автор утверждает, что без твердого понимания линейной алгебры невозможно полностью понять основополагающие принципы науки о данных. Он также подчеркивает важность использования MATLAB для выполнения вычислений и визуализации результатов, так как это мощный инструмент для работы с матрицами и векторами.
''

You may also be interested in:

Mathematics for Data Science Linear Algebra with Matlab
Before Machine Learning Volume 1 - Linear Algebra for A.I: The fundamental mathematics for Data Science and Artificial Inteligence.
Before Machine Learning Volume 1 - Linear Algebra for A.I. The fundamental mathematics for Data Science and Artificial Inteligence
Before Machine Learning Volume 1 - Linear Algebra for A.I. The fundamental mathematics for Data Science and Artificial Inteligence
Linear Algebra in Data Science
Linear Algebra for Data Science
Essential Math for Data Science Take Control of Your Data with Fundamental Linear Algebra, Probability, and Statistics (Third Early Release)
Linear Algebra for Data Science, Machine Learning, and Signal Processing
Linear Algebra for Data Science, Machine Learning, and Signal Processing
Mathematics for Engineers II: Calculus and Linear Algebra
Functional Linear Algebra (Textbooks in Mathematics)
Linear Algebra Gateway to Mathematics Second Edition
Linear Algebra (Dover Books on Mathematics)
Linear Algebra Tools for Data Mining
Higher Mathematics for Engineering Students: Part 1, Linear Algebra and Fundamentals of Mathematical Analysis
Coding the Matrix Linear Algebra through Applications to Computer Science
Linear Algebra Done Right (Hardcover)LINEAR ALGEBRA DONE RIGHT (HARDCOVER) by Axler, Sheldon Jay (Author) on Jul-18-1997 Hardcover
Linear Algebra and Geometry (Algebra, Logic and Applications) by P. K. Suetin (14-Jul-1989) Hardcover
Data Science from Scratch Want to become a Data Scientist? This guide for beginners will walk you through the world of Data Science, Big Data, Machine Learning and Deep Learning
Linear Algebra
Linear Algebra for Everyone
Linear Algebra
Linear Algebra What you Need to Know
Linear Algebra
Linear Algebra
Before Machine Learning Volume 2 - Calculus for A.I: The fundamental mathematics for Data Science and Artificial Intelligence
Before Machine Learning, Volume 2 - Calculus for A.I. The fundamental mathematics for Data Science and Artificial Intelligence
Before Machine Learning, Volume 2 - Calculus for A.I. The fundamental mathematics for Data Science and Artificial Intelligence
Data Science for Mathematicians (CRC Press/Chapman and Hall Handbooks in Mathematics Series)
An Introduction to Linear Algebra
Elementary Linear Algebra
Linear Algebra with Python
Linear Algebra and Its Applications
Linear Algebra with Python
Linear Algebra and Matrices
Linear Algebra and Optimization
Linear Algebra, Fifth Edition
Applied linear algebra
Linear Algebra in Action
Linear Algebra with Applications