BOOKS - Principles of Machine Learning The Three Perspectives
Principles of Machine Learning The Three Perspectives - Wenmin Wang 2025 PDF | EPUB Springer BOOKS
ECO~19 kg CO²

2 TON

Views
10445

Telegram
 
Principles of Machine Learning The Three Perspectives
Author: Wenmin Wang
Year: 2025
Pages: 548
Format: PDF | EPUB
File size: 39.5 MB
Language: ENG



Pay with Telegram STARS
Principles of Machine Learning The Three Perspectives The book "Principles of Machine Learning The Three Perspectives" is a comprehensive guide that explores the three main perspectives of machine learning: the technical perspective, the business perspective, and the societal perspective. It provides a deep understanding of the process of technology evolution and its impact on society, highlighting the need for a personal paradigm for perceiving the technological process of developing modern knowledge as the basis for the survival of humanity and the survival of the unification of people in a warring state. Technical Perspective The technical perspective focuses on the development of machine learning algorithms and their applications in various industries. It covers the basics of machine learning, including supervised and unsupervised learning, neural networks, and deep learning. The book explains how these algorithms are used to solve complex problems in areas such as image recognition, natural language processing, and predictive modeling. It also discusses the challenges and limitations of machine learning, such as overfitting, underfitting, and the need for large amounts of data. Business Perspective The business perspective examines the role of machine learning in the corporate world, including its use in automation, decision-making, and strategy development. It explores the potential benefits and risks of implementing machine learning in business, such as increased efficiency, improved customer service, and job displacement.
Принципы машинного обучения Три перспективы Книга «Принципы машинного обучения Три перспективы» является всеобъемлющим руководством, в котором рассматриваются три основные перспективы машинного обучения: техническая перспектива, бизнес-перспектива и социальная перспектива. Она дает глубокое понимание процесса эволюции технологий и его влияния на общество, подчеркивая необходимость личностной парадигмы восприятия технологического процесса развития современных знаний как основы выживания человечества и выживания объединения людей в воюющем государстве. Техническая перспектива Техническая перспектива фокусируется на разработке алгоритмов машинного обучения и их приложений в различных отраслях. Он охватывает основы машинного обучения, включая обучение с учителем и без учителя, нейронные сети и глубокое обучение. В книге объясняется, как эти алгоритмы используются для решения сложных задач в таких областях, как распознавание изображений, обработка естественного языка и прогнозное моделирование. В нем также обсуждаются проблемы и ограничения машинного обучения, такие как переобучение, недостаточное оснащение и потребность в больших объемах данных. Бизнес-перспектива Бизнес-перспектива рассматривает роль машинного обучения в корпоративном мире, включая его использование в автоматизации, принятии решений и разработке стратегии. В нем рассматриваются потенциальные преимущества и риски внедрения машинного обучения в бизнес, такие как повышение эффективности, улучшение обслуживания клиентов и замещение рабочих мест.
''

You may also be interested in:

Principles of Machine Learning The Three Perspectives
Machine Learning and Analytics in Healthcare Systems Principles and Applications
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Feature Engineering for Machine Learning Principles and Techniques for Data Scientists
Python Machine Learning The Ultimate Guide for Beginners to Machine Learning with Python, Programming and Deep Learning, Artificial Intelligence, Neural Networks, and Data Science
Introduction to Data Governance for Machine Learning Systems Fundamental Principles, Critical Practices, and Future Trends
Debugging Machine Learning Models with Python: Develop high-performance, low-bias, and explainable machine learning and deep learning models
Machine Learning for Business The Ultimate Artificial Intelligence & Machine Learning for Managers, Team Leaders and Entrepreneurs
Building Machine Learning Systems Using Python Practice to Train Predictive Models and Analyze Machine Learning Results
Machine Learning in Production: Master the art of delivering robust Machine Learning solutions with MLOps (English Edition)
Machine Learning for Beginners An Introductory Guide to Learn and Understand Artificial Intelligence, Neural Networks and Machine Learning
Applied Machine Learning and High-Performance Computing on AWS: Accelerate the development of machine learning applications following architectural best practices
Serverless Machine Learning with Amazon Redshift ML: Create, train, and deploy machine learning models using familiar SQL commands
Online Machine Learning: A Practical Guide with Examples in Python (Machine Learning: Foundations, Methodologies, and Applications)
Machine Learning Master Machine Learning Fundamentals for Beginners, Business Leaders and Aspiring Data Scientists
Machine Learning for Data Streams with Practical Examples in MOA (Adaptive Computation and Machine Learning series)
Machine Learning The Ultimate Guide to Understand AI Big Data Analytics and the Machine Learning’s Building Block Application in Modern Life
Machine Learning for Beginners Build and deploy Machine Learning systems using Python, 2nd Edition
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning: A Guide to PyTorch, TensorFlow, and Scikit-Learn: Mastering Machine Learning With Python
Machine Learning A Guide to PyTorch, TensorFlow, and Scikit-Learn Mastering Machine Learning With Python
Machine Learning with Core ML 2 and Swift A beginner-friendly guide to integrating machine learning into your apps
Robust Machine Learning: Distributed Methods for Safe AI (Machine Learning: Foundations, Methodologies, and Applications)
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Programming Machine Learning Machine Learning Basics Concepts + Artificial Intelligence + Python Programming + Python Machine Learning
Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis
Programming With Python 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Machine Learning for Beginners A Practical Guide to Understanding and Applying Machine Learning Concepts
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning
Machine Learning, Animated (Chapman and Hall CRC Machine Learning and Pattern Recognition)
Machine Learning for Finance Master Financial Strategies with Python-Powered Machine Learning
Pragmatic Machine Learning with Python Learn How to Deploy Machine Learning Models in Production
Machine Learning for Absolute Beginners An Absolute beginner’s guide to learning and understanding machine learning successfully
Machine Learning with Python The Ultimate Guide to Learn Machine Learning Algorithms. Includes a Useful Section about Analysis, Data Mining and Artificial Intelligence in Business Applications
Machine Learning Tutorial: Machine Learning Simply Easy Learning
Machine Learning The Ultimate Guide to Understand Artificial Intelligence and Big Data Analytics. Learn the Building Block Algorithms and the Machine Learning’s Application in the Modern Life
Machine Learning Production Systems Engineering Machine Learning Models and Pipelines
Introduction to Machine Learning (Adaptive Computation and Machine Learning), 4th Edition
Statistics for Machine Learning Implement Statistical methods used in Machine Learning using Python