BOOKS - Causal Inference in Python: Applying Causal Inference in the Tech Industry
Causal Inference in Python: Applying Causal Inference in the Tech Industry - Matheus Facure Expected publication August 22, 2023 PDF  BOOKS
ECO~29 kg CO²

3 TON

Views
99873

Telegram
 
Causal Inference in Python: Applying Causal Inference in the Tech Industry
Author: Matheus Facure
Year: Expected publication August 22, 2023
Format: PDF
File size: PDF 11 MB
Language: English



Pay with Telegram STARS
Causal Inference in Python: Applying Causal Inference in the Tech Industry In today's fast-paced tech industry, understanding the impact of our actions on business metrics is crucial for making informed decisions. Causal inference is a powerful tool that allows us to estimate the effects of different levers on our desired outcomes, helping us optimize our strategies and drive growth. This book, "Causal Inference in Python: Applying Causal Inference in the Tech Industry provides a comprehensive guide to applying causal inference in the tech industry, with practical examples and real-world applications. The author, Matheus Facure, a senior data scientist at Nubank, expertly explains the largely untapped potential of causal inference for estimating impacts and effects. The book covers classical causal inference methods such as randomized control trials, A/B tests, linear regression, propensity score synthetic controls, and difference-in-differences. Each method is accompanied by an application in the industry, serving as a grounding example for readers to understand how to apply these techniques in their own work.
Причинный вывод на Python: Применение причинного вывода в технологической индустрии В современной быстро развивающейся технологической индустрии понимание влияния наших действий на показатели бизнеса имеет решающее значение для принятия обоснованных решений. Причинный вывод - это мощный инструмент, который позволяет нам оценить влияние различных рычагов на наши желаемые результаты, помогая нам оптимизировать наши стратегии и стимулировать рост. Эта книга «Causal Inference in Python: Applying Causal Inference in the Tech Industry» содержит исчерпывающее руководство по применению причинно-следственных связей в технологической индустрии с практическими примерами и реальными приложениями. Автор, Matheus Facure, старший специалист по данным в Nubank, экспертно объясняет в значительной степени неиспользованный потенциал причинного вывода для оценки воздействий и эффектов. Книга охватывает классические методы причинного вывода, такие как рандомизированные контрольные испытания, A/B-тесты, линейная регрессия, синтетические контроли оценки склонности и различия в различиях. Каждый метод сопровождается приложением в отрасли, служа примером заземления для читателей, чтобы понять, как применять эти методы в собственной работе.
Conclusion causale sur Python : Application de la conclusion causale dans l'industrie technologique Dans l'industrie technologique moderne en évolution rapide, il est essentiel de comprendre l'impact de nos actions sur la performance des entreprises pour prendre des décisions éclairées. La conclusion causale est un outil puissant qui nous permet d'évaluer l'impact des différents leviers sur nos résultats souhaités, nous aidant à optimiser nos stratégies et à stimuler la croissance. Ce livre, « Causal Inference in Python : Applying Causal Inference in the Tech Industry », fournit un guide complet sur l'application de la causalité dans l'industrie technologique, avec des exemples pratiques et des applications réelles. L'auteur, Matheus Facure, spécialiste senior des données chez Nubank, explique de manière experte le potentiel largement inexploité des conclusions causales pour évaluer les impacts et les effets. livre couvre les méthodes classiques d'inférence causale telles que les essais de contrôle randomisés, les tests A/B, la régression linéaire, les contrôles synthétiques d'évaluation de la propension et les différences dans les différences. Chaque méthode est accompagnée d'une application dans l'industrie, servant d'exemple de mise à la terre pour que les lecteurs comprennent comment appliquer ces méthodes dans leur propre travail.
Conclusión causal en Python: Aplicación de la inferencia causal en la industria tecnológica En la industria tecnológica de hoy en día, la comprensión del impacto de nuestras acciones en el desempeño empresarial es crucial para tomar decisiones informadas. La inferencia causal es una poderosa herramienta que nos permite evaluar el impacto de las diferentes palancas en nuestros resultados deseados, ayudándonos a optimizar nuestras estrategias y estimular el crecimiento. Este libro, «Causal Inference in Python: Applying Causal Inference in the Tech Industry», ofrece una guía exhaustiva sobre la aplicación de la causalidad en la industria tecnológica con ejemplos prácticos y aplicaciones reales. autor, Matheus Facure, especialista senior en datos de Nubank, explica de manera experta en gran medida el potencial de inferencia causal sin explotar para evaluar los impactos y efectos. libro cubre técnicas clásicas de inferencia causal, como ensayos de control aleatorizados, pruebas A/B, regresión lineal, controles sintéticos de evaluación de inclinación y diferencias en las diferencias. Cada método se acompaña de una aplicación en la industria, sirviendo como ejemplo de puesta a tierra para que los lectores entiendan cómo aplicar estas técnicas en su propio trabajo.
Impressão causal em Python: Aplicação de causalidade na indústria de tecnologia Na indústria de tecnologia moderna em rápida evolução, compreender o impacto de nossas ações nos indicadores de negócios é fundamental para tomar decisões razoáveis. A conclusão causal é uma ferramenta poderosa que nos permite avaliar os efeitos das diferentes alavancas sobre os nossos resultados desejados, ajudando-nos a otimizar nossas estratégias e impulsionar o crescimento. Este livro «Causal Inference in Python: Applying Causal Inference in the Tech Industriy» fornece um guia completo sobre a aplicação de relações de causa e efeito na indústria tecnológica, com exemplos práticos e aplicativos reais. O autor, Matheus Facure, especialista sênior em dados no Nubank, explica, em grande parte, o potencial de conclusão causal não utilizado para avaliar efeitos e efeitos. O livro abrange métodos clássicos de causalidade, tais como testes de controle randomizados, testes A/B, regressão linear, controladores sintéticos de estimativas de inclinação e diferenças de diferenças. Cada método é acompanhado por uma aplicação na indústria, servindo de exemplo de terra para os leitores para entender como aplicar esses métodos em seu próprio trabalho.
Causale su Python: L'applicazione dell'output causale nell'industria tecnologica Nel settore tecnologico in continua evoluzione, comprendere l'impatto delle nostre azioni sugli indicatori aziendali è fondamentale per prendere decisioni ragionevoli. Il risultato causale è uno strumento potente che ci permette di valutare l'impatto delle diverse leve sui nostri risultati desiderati, aiutandoci a ottimizzare le nostre strategie e a stimolare la crescita. Questo libro «Causal Inference in Python: Applying Causal Inference in the Tech Industry» fornisce una guida completa all'applicazione delle relazioni causali nell'industria tecnologica con esempi pratici e applicazioni reali. L'autore, Matheus Facure, specialista senior in dati di Nubank, spiega in modo approfondito il potenziale inutilizzato dell'output causale per valutare gli effetti e gli effetti. Il libro comprende metodi classici di causale, come test di controllo randomizzati, test A/B, regressione lineare, controlli sintetici di valutazione della propensione e differenze nelle differenze. Ogni metodo è accompagnato da un'applicazione nel settore, servendo come esempio di terra per i lettori per capire come applicare questi metodi nel proprio lavoro.
Kausale Schlussfolgerung in Python: Anwendung kausaler Schlussfolgerungen in der Technologiebranche In der heutigen schnelllebigen Technologiebranche ist das Verständnis der Auswirkungen unseres Handelns auf die Geschäftsleistung entscheidend für fundierte Entscheidungen. Kausale Inferenz ist ein leistungsfähiges Werkzeug, das es uns ermöglicht, die Auswirkungen verschiedener Hebel auf unsere gewünschten Ergebnisse zu bewerten und uns dabei zu helfen, unsere Strategien zu optimieren und das Wachstum voranzutreiben. Dieses Buch „Causal Inference in Python: Applying Causal Inference in the Tech Industry“ bietet eine umfassende Anleitung zur Anwendung von Ursache-Wirkungs-Beziehungen in der Technologiebranche mit praktischen Beispielen und realen Anwendungen. Der Autor, Matheus Facure, Senior Data Scientist bei der Nubank, erklärt fachmännisch das weitgehend ungenutzte kausale Inferenzpotenzial zur Bewertung von Auswirkungen und Effekten. Das Buch behandelt klassische kausale Inferenzmethoden wie randomisierte Kontrollstudien, A/B-Tests, lineare Regression, synthetische Neigungsschätzungskontrollen und Unterschiede in Unterschieden. Jede Methode wird von einer Anwendung in der Branche begleitet und dient als Beispiel für die Erdung der ser, um zu verstehen, wie sie diese Methoden in ihrer eigenen Arbeit anwenden können.
Przyczynowe Wnioskowanie w Pythonie: Zastosowanie wniosku przyczynowego do przemysłu technologicznego W dzisiejszym rozwijającym się przemyśle technologicznym zrozumienie wpływu naszych działań na wyniki biznesowe ma kluczowe znaczenie dla podejmowania świadomych decyzji. Wnioskowanie przyczynowe jest potężnym narzędziem, które pozwala nam ocenić wpływ różnych dźwigni na pożądane wyniki, pomagając nam optymalizować nasze strategie i napędzać wzrost. Ta książka, „Przyczynowy wniosek w Pythonie: Zastosowanie przyczynowego wniosku w przemyśle technologicznym”, zawiera kompleksowy przewodnik po zastosowaniu przyczyny i efektu w przemyśle technologicznym, z praktycznymi przykładami i zastosowaniami w świecie rzeczywistym. Autorka, Matheus Facure, starszy informatyk z Nubank, fachowo wyjaśnia w dużej mierze niewykorzystany potencjał wnioskowania przyczynowego do oceny skutków i skutków. Książka obejmuje klasyczne metody wnioskowania przyczynowego, takie jak randomizowane próby kontrolne, testy A/B, regresja liniowa, sterowanie punktem skłonności syntetycznej oraz różnice w różnicach. Każdej metodzie towarzyszy aplikacja w branży, służąca jako przykład uziemienia dla czytelników do zrozumienia, jak stosować te metody we własnej pracy.
Causal Inference in Python: יישום הסקה סיבתית לתעשיית הטכנולוגיה בתעשיית הטכנולוגיה הפורחת של היום, הבנת ההשפעה של הפעולות שלנו על ביצועים עסקיים היא קריטית לקבלת החלטות מושכלות. הסקה סיבתית היא כלי רב עוצמה המאפשר לנו להעריך את ההשפעה של מנופים שונים על התוצאות הרצויות שלנו, ספר זה, Causal Inference in Python: Appliing Causal Inference in the Tech Industry, מספק מדריך מקיף ליישום סיבה ותוצאה בתעשיית הטכנולוגיה, עם דוגמאות מעשיות ויישומים בעולם האמיתי. המחבר, מתאוס פקור, מדען בכיר בנובנק, מסביר במומחיות את הפוטנציאל הרב שלא מנוצל להסיק סיבתיות כדי להעריך השפעות והשפעות. הספר עוסק בשיטות קלאסיות של הסקה סיבתית, כגון מבחני בקרה אקראיים, מבחני A/B, רגרסיה לינארית, בקרת ניקוד נטייה סינתטית והבדלים בהבדלים. כל שיטה מלווה ביישום בתעשייה, ומשמשת דוגמה לריתוק הקוראים כדי להבין כיצד ליישם שיטות אלה בעבודתם.''
Python'da Nedensel Çıkarım: Teknoloji Endüstrisine Nedensel Çıkarım Uygulamak Günümüzün gelişen teknoloji endüstrisinde, eylemlerimizin iş performansı üzerindeki etkisini anlamak, bilinçli kararlar almak için kritik öneme sahiptir. Nedensel çıkarım, farklı kaldıraçların arzu ettiğimiz sonuçlar üzerindeki etkisini değerlendirmemize, stratejilerimizi optimize etmemize ve büyümeyi sağlamamıza yardımcı olan güçlü bir araçtır. "Python'da Nedensel Çıkarım: Teknoloji Endüstrisinde Nedensel Çıkarım Uygulamak'adlı bu kitap, pratik örnekler ve gerçek dünya uygulamaları ile teknoloji endüstrisinde neden ve sonuç uygulamasına kapsamlı bir rehber sunmaktadır. Nubank'ta kıdemli bir veri bilimcisi olan yazar Matheus Facure, etkileri ve etkileri değerlendirmek için nedensel çıkarım için büyük ölçüde kullanılmayan potansiyeli ustalıkla açıklıyor. Kitap, randomize kontrol denemeleri, A/B testleri, doğrusal regresyon, sentetik eğilim skoru kontrolleri ve farklılıklardaki farklılıklar gibi klasik nedensel çıkarım yöntemlerini kapsamaktadır. Her yönteme, sektördeki bir uygulama eşlik eder ve okuyucuların bu yöntemleri kendi çalışmalarında nasıl uygulayacaklarını anlamaları için bir topraklama örneği olarak hizmet eder.
الاستدلال السببي في بايثون: تطبيق الاستدلال السببي على صناعة التكنولوجيا في صناعة التكنولوجيا المزدهرة اليوم، يعد فهم تأثير إجراءاتنا على أداء الأعمال أمرًا بالغ الأهمية لاتخاذ قرارات مستنيرة. الاستدلال السببي هو أداة قوية تسمح لنا بتقييم تأثير الرافعات المختلفة على النتائج المرجوة، مما يساعدنا على تحسين استراتيجياتنا ودفع النمو. يقدم هذا الكتاب، «الاستدلال السببي في بايثون: تطبيق الاستدلال السببي في صناعة التكنولوجيا»، دليلاً شاملاً لتطبيق السبب والنتيجة في صناعة التكنولوجيا، مع أمثلة عملية وتطبيقات في العالم الحقيقي. يشرح المؤلف، ماثيوس فاكور، عالم البيانات البارز في Nubank، بخبرة الإمكانات غير المستغلة إلى حد كبير للاستدلال السببي لتقييم التأثيرات والتأثيرات. يغطي الكتاب الطرق الكلاسيكية للاستدلال السببي، مثل تجارب التحكم العشوائية، واختبارات A/B، والانحدار الخطي، وضوابط درجة الميل الاصطناعي، والاختلافات في الاختلافات. كل طريقة مصحوبة بتطبيق في الصناعة، بمثابة مثال على الأساس للقراء لفهم كيفية تطبيق هذه الأساليب في عملهم الخاص.
Python的因果推斷:在技術行業應用因果推斷在當今快速發展的技術行業中,了解我們的行動對業務績效的影響對於做出明智的決定至關重要。因果推理是一個強大的工具,使我們能夠評估各種杠桿對我們期望的結果的影響,幫助我們優化我們的戰略和刺激增長。本書「Python中的Causal Inference:應用技術行業中的Causal Inference」提供了有關在技術行業中應用因果關系的詳盡指南,並提供了實例和實際應用。作者Matheus Facure是Nubank的高級數據專家,他專家解釋了因果推理在評估影響和影響方面基本上未開發的潛力。該書涵蓋了經典的因果推斷方法,例如隨機對照試驗,A/B測試,線性回歸,合成傾向估計對照以及差異。每種方法都伴隨著行業中的應用程序,作為讀者了解如何在自己的工作中應用這些技術的示例。

You may also be interested in:

Data Curious: Applying Agile Analytics for Better Business Decisions
How to Design Optimization Algorithms by Applying Natural Behavioral Patterns
Python: Learn Python in One Day and Learn It Well. Python for Beginners with Hands-on Project.
Python Programming in100 Pages Python Programming for Beginners, python crash course
Network programmability and Automation with Python The Ultimate Guide to Network Programmability with Python! Python Scripting for Network Efficiency. Boost Network Efficiency and Agility with Python
Network programmability and Automation with Python The Ultimate Guide to Network Programmability with Python! Python Scripting for Network Efficiency. Boost Network Efficiency and Agility with Python
Applying Color Theory to Digital Media and Visualization, 2nd Edition
SAFe 4.5 Distilled: Applying the Scaled Agile Framework for Lean Enterprises
Applying an Implementation Science Approach to Genomic Medicine: Workshop Summary
Applying Artificial Intelligence in Cybersecurity Analytics and Cyber Threat Detection
Applying to American Universities and Colleges for Parents and Students: Acing the App
Kabbalah for Beginners: Understanding and Applying Kabbalistic History, Concepts, and Practices
Rise of the Reader: Strategies For Mastering Your Reading Habits and Applying What You Learn
Applying Color Theory to Digital Media and Visualization, 2nd Edition
Fast and Effective Embedded Systems Design Applying the ARM mbed
Applying Artificial Intelligence in Cybersecurity Analytics and Cyber Threat Detection
Considerations in Applying Benefit-Cost Analysis to Preventive Interventions for Children
Applying Artificial Intelligence in Cybersecurity Analytics and Cyber Threat Detection
Statistical Inference Based on Kernel Distribution Function Estimators (JSS Research Series in Statistics)
Python Programming for beginners Learn Python in a step by step approach, Complete practical crash course to learn Python
Designing for Behavior Change Applying Psychology and Behavioral Economics, 2nd Edition
Applying a Health Lens to Business Practices, Policies, and Investments: Workshop Summary
Special Make-up Effects for Stage & Screen Making and Applying Prosthetics
Equine Behaviour in Mind: Applying Behavioural Science to the Way We Keep, Work and Care for Horses
Practical Python GUI Development with Exercises: 100+ Practical Python GUI Development Exercises. The Ultimate Exercise Guide for Python GUI Development! (Python Trailblazer|s Bible)
Python Data Science An Essential Crash Course Made Accessible to Start Working With Essential Tools, Techniques and Concepts that Help you Learn Python Data Science (python for beginners Book 2)
Programming With Python 4 Manuscripts - Deep Learning With Keras, Convolutional Neural Networks In Python, Python Machine Learning, Machine Learning With Tensorflow
Let Us Python Solutions - 5th Edition: Learn By Doing - The Python Learning Mantra Solutions to all Exercises in Let Us Python Cross-check Your Solutions (English Edition)
Computer Programming This Book Includes Machine Learning for Beginners, Machine Learning with Python, Deep Learning with Python, Python for Data Analysis
SAFe 4.0 Distilled Applying the Scaled Agile Framework for Lean Software and Systems Engineering
Renewed Accountability for Access and Excellence: Applying a Model for Democratic Professional Practice in Education
Designing Accessible Learning Content: A Practical Guide to Applying best-practice Accessibility Standards to L and D Resources
Mimesis and Sacrifice: Applying Girard|s Mimetic Theory Across the Disciplines (Violence, Desire, and the Sacred)
Applying Power Series to Differential Equations: An Exploration through Questions and Projects (Problem Books in Mathematics)
Designing for Behavior Change Applying Psychology and Behavioral Economics, 2nd Edition (Early Release)
Transfer Pricing in One Lesson: A Practical Guide to Applying the Arm|s Length Principle in Intercompany Transactions
Building Hybrid Android Apps with Java and javascript Applying Native Device APIs
Python Machine Learning Discover the Essentials of Machine Learning, Data Analysis, Data Science, Data Mining and Artificial Intelligence Using Python Code with Python Tricks
Programming Techniques using Python Have Fun and Play with Basic and Advanced Core Python
Python Game Development Creating Interactive Games With Python And Pygame Library