BOOKS - Application of Machine Learning in Slope Stability Assessment
Application of Machine Learning in Slope Stability Assessment - Zhang Wengang July 9, 2023 PDF  BOOKS
ECO~19 kg CO²

2 TON

Views
11074

Telegram
 
Application of Machine Learning in Slope Stability Assessment
Author: Zhang Wengang
Year: July 9, 2023
Format: PDF
File size: PDF 7.7 MB
Language: English



Pay with Telegram STARS
Book Application of Machine Learning in Slope Stability Assessment Introduction: In this book, we explore the application of machine learning techniques in assessing the stability of slopes and preventing landslides, which is a critical issue in geotechnical engineering. The main objective is to provide a comprehensive overview of the current state-of-the-art in machine learning approaches for slope stability assessment, highlighting their strengths, weaknesses, and future research directions. We focus on the practical applications of various machine learning algorithms, including supervised, unsupervised, semi-supervised, reinforcement learning, deep learning, ensemble learning, and their hybrid combinations. Our goal is to demonstrate how these techniques can be used to predict slope stability and prevent landslides, ensuring the safety of infrastructure and human life. Chapter 1: Overview of Machine Learning Techniques in Slope Stability Assessment This chapter provides an introduction to the fundamental concepts of machine learning and their relevance to slope stability assessment. We discuss the mainstream smart insitu monitoring techniques and their applications in slope engineering, highlighting the advantages and limitations of each approach. We also introduce the basic principles of machine learning algorithms, including supervised, unsupervised, semi-supervised, and reinforcement learning, and their significance in predicting slope stability.
Book Application of Machine arning in Slope Stability Assessment Введение: В этой книге мы исследуем применение методов машинного обучения при оценке устойчивости склонов и предотвращении оползней, что является критической проблемой в геотехнической инженерии. Основная цель состоит в том, чтобы предоставить всесторонний обзор современного состояния подходов машинного обучения для оценки устойчивости склона, подчеркивая их сильные и слабые стороны, а также будущие направления исследований. Мы фокусируемся на практическом применении различных алгоритмов машинного обучения, включая контролируемое, неконтролируемое, полу-контролируемое, подкрепляющее обучение, глубокое обучение, обучение ансамблю и их гибридные комбинации. Наша цель - продемонстрировать, как эти методики могут быть использованы для прогнозирования устойчивости склонов и предотвращения оползней, обеспечения безопасности инфраструктуры и жизни людей. Глава 1: Обзор методов машинного обучения в оценке устойчивости склонов В этой главе представлено введение в фундаментальные концепции машинного обучения и их отношение к оценке устойчивости склонов. Мы обсуждаем основные методы интеллектуального мониторинга на месте и их применение в проектировании уклона, подчеркивая преимущества и ограничения каждого подхода. Мы также представляем основные принципы алгоритмов машинного обучения, включая обучение с учителем, без учителя, с полу учителем и с подкреплением, и их значение в прогнозировании стабильности уклона.
Book Application of Machine Arning in Slope Stability Assessment Introduction : Dans ce livre, nous étudions l'application des techniques d'apprentissage automatique dans l'évaluation de la stabilité des pentes et la prévention des glissements de terrain, un problème critique en ingénierie géotechnique. L'objectif principal est de fournir un aperçu complet de l'état actuel des approches d'apprentissage automatique pour évaluer la stabilité de la pente, en soulignant leurs forces et leurs faiblesses, ainsi que les orientations futures de la recherche. Nous nous concentrons sur l'application pratique de divers algorithmes d'apprentissage automatique, y compris l'apprentissage contrôlé, non contrôlé, semi-contrôlé, étayant, l'apprentissage profond, l'apprentissage d'ensemble et leurs combinaisons hybrides. Notre objectif est de montrer comment ces techniques peuvent être utilisées pour prédire la stabilité des pentes et prévenir les glissements de terrain, assurer la sécurité des infrastructures et la vie des personnes. Chapitre 1 : Aperçu des méthodes d'apprentissage automatique dans l'évaluation de la stabilité des pentes Ce chapitre présente une introduction aux concepts fondamentaux de l'apprentissage automatique et à leur rapport avec l'évaluation de la stabilité des pentes. Nous discutons des principales méthodes de surveillance intelligente sur place et de leur application dans la conception de la pente, en soulignant les avantages et les limites de chaque approche. Nous présentons également les principes de base des algorithmes d'apprentissage automatique, y compris l'apprentissage avec un professeur, sans professeur, avec un professeur de sexe et avec des renforts, et leur importance dans la prévision de la stabilité de la pente.
Application of Machine arning in Slope Stability Assessment Introducción: En este libro investigamos la aplicación de técnicas de aprendizaje automático en la evaluación de la estabilidad de las laderas y la prevención de deslizamientos de tierra, que es un problema crítico en la ingeniería geotécnica. objetivo principal es ofrecer una visión global del estado actual de los enfoques de aprendizaje automático para evaluar la estabilidad de la pendiente, destacando sus fortalezas y debilidades, así como futuras líneas de investigación. Nos centramos en la aplicación práctica de una variedad de algoritmos de aprendizaje automático, incluyendo el aprendizaje controlado, no controlado, semi-controlado, reforzado, aprendizaje profundo, aprendizaje de conjunto y sus combinaciones híbridas. Nuestro objetivo es demostrar cómo se pueden utilizar estas técnicas para predecir la estabilidad de los taludes y prevenir deslizamientos de tierra, garantizar la seguridad de la infraestructura y la vida de las personas. Capítulo 1: Revisión de las técnicas de aprendizaje automático en la evaluación de la estabilidad de las laderas Este capítulo presenta una introducción a los conceptos fundamentales del aprendizaje automático y su relación con la evaluación de la estabilidad de las laderas. Discutimos las principales técnicas de monitoreo inteligente in situ y su aplicación en el diseño de pendiente, destacando las ventajas y limitaciones de cada enfoque. También presentamos los principios básicos de los algoritmos de aprendizaje automático, incluyendo el aprendizaje con un profesor, sin un profesor, con un profesor de sexo y con refuerzos, y su importancia en la predicción de la estabilidad de la pendiente.
Buchanwendung Maschinelles rnen in der Slope Stability Assessment Einleitung: In diesem Buch untersuchen wir die Anwendung von maschinellen rntechniken bei der Beurteilung der Stabilität von Hängen und der Verhinderung von Erdrutschen, einem kritischen Thema in der Geotechnik. Hauptziel ist es, einen umfassenden Überblick über den Stand der Technik von Machine-arning-Ansätzen zur Beurteilung der Hangstabilität zu geben und deren Stärken und Schwächen sowie zukünftige Forschungsrichtungen hervorzuheben. Wir konzentrieren uns auf die praktische Anwendung verschiedener Algorithmen für maschinelles rnen, einschließlich kontrollierter, unkontrollierter, halbkontrollierter, unterstützender, Deep arning, Ensemble-Training und deren Hybridkombinationen. Unser Ziel ist es, zu zeigen, wie diese Techniken verwendet werden können, um die Stabilität von Hängen vorherzusagen und Erdrutsche zu verhindern, die Infrastruktur und das ben der Menschen zu sichern. Kapitel 1: Überblick über Methoden des maschinellen rnens in der Pistenstabilitätsbewertung Dieses Kapitel bietet eine Einführung in die grundlegenden Konzepte des maschinellen rnens und ihre Beziehung zur Pistenstabilitätsbewertung. Wir diskutieren die wichtigsten Methoden der intelligenten Vor-Ort-Überwachung und ihre Anwendung in der Hanggestaltung und betonen die Vorteile und Grenzen jedes Ansatzes. Wir präsentieren auch die Grundprinzipien von Algorithmen für maschinelles rnen, einschließlich des rnens mit dem hrer, ohne den hrer, mit dem hrer und mit Verstärkung, und ihre Bedeutung bei der Vorhersage der Stabilität der Neigung.
''
Makine Öğreniminin Eğim Kararlılığı Değerlendirmesinde Kitap Uygulaması Giriş: Bu kitapta, makine öğrenimi tekniklerinin eğim kararlılığı değerlendirmesinde ve jeoteknik mühendisliğinde kritik bir konu olan heyelan önlemede uygulanmasını araştırıyoruz. Temel amaç, eğim istikrarını değerlendirmek, güçlü ve zayıf yönlerini ve gelecekteki araştırma yönlerini vurgulamak için makine öğrenimi yaklaşımlarının mevcut durumuna kapsamlı bir genel bakış sağlamaktır. Denetimli, kontrolsüz, yarı denetimli, takviye öğrenme, derin öğrenme, topluluk öğrenme ve bunların hibrit kombinasyonları dahil olmak üzere çeşitli makine öğrenme algoritmalarının pratik uygulamasına odaklanıyoruz. Amacımız, bu tekniklerin eğimlerin stabilitesini tahmin etmek ve toprak kaymalarını önlemek, altyapının ve insanların hayatlarının güvenliğini sağlamak için nasıl kullanılabileceğini göstermektir. Bölüm 1: Eğim Kararlılığı Değerlendirmesinde Makine Öğrenimi Yöntemlerine Genel Bakış Bu bölüm, temel makine öğrenimi kavramlarına ve bunların eğim kararlılığı değerlendirmesi ile ilişkisine bir giriş sunmaktadır. Temel yerinde akıllı izleme tekniklerini ve bunların eğim tasarımındaki uygulamalarını tartışıyor, her bir yaklaşımın yararlarını ve sınırlamalarını vurguluyoruz. Ayrıca denetimli, denetimsiz, yarı denetimli ve güçlendirilmiş öğrenme dahil olmak üzere makine öğrenme algoritmalarının temel prensiplerini ve bunların eğim stabilitesini tahmin etmedeki etkilerini sunuyoruz.
تطبيق كتاب التعلم الآلي في تقييم استقرار المنحدرات مقدمة: في هذا الكتاب، نستكشف تطبيق تقنيات التعلم الآلي في تقييم استقرار المنحدرات ومنع الانهيارات الأرضية، وهي قضية حاسمة في الهندسة الجيوتقنية. الهدف الأساسي هو تقديم نظرة عامة شاملة على الحالة الحالية لنهج التعلم الآلي لتقييم استقرار المنحدرات، وتسليط الضوء على نقاط قوتها وضعفها، واتجاهات البحث المستقبلية. نحن نركز على التطبيق العملي لخوارزميات التعلم الآلي المختلفة، بما في ذلك التعلم المعزز الخاضع للإشراف وغير المنضبط وشبه الخاضع للإشراف والتعلم المعزز والتعلم العميق والتعلم الجماعي وتركيباتها الهجينة. هدفنا هو إظهار كيف يمكن استخدام هذه التقنيات للتنبؤ باستقرار المنحدرات ومنع الانهيارات الأرضية، وضمان سلامة البنية التحتية وحياة الناس. الفصل 1: نظرة عامة على طرق التعلم الآلي في تقييم استقرار المنحدرات يقدم هذا الفصل مقدمة لمفاهيم التعلم الآلي الأساسية وعلاقتها بتقييم استقرار المنحدرات. نناقش تقنيات المراقبة الذكية الأساسية في الموقع وتطبيقها في تصميم المنحدرات، مع تسليط الضوء على فوائد وقيود كل نهج. نقدم أيضًا المبادئ الأساسية لخوارزميات التعلم الآلي، بما في ذلك التعلم الخاضع للإشراف وغير الخاضع للإشراف وشبه الخاضع للإشراف والمعزز، وآثارها في التنبؤ باستقرار المنحدر.

You may also be interested in:

Machine Learning Tutorial: Machine Learning Simply Easy Learning
Introduction to Machine Learning (Adaptive Computation and Machine Learning), 4th Edition
Machine Learning An In-Depth Beginners Guide into the Essentials of Machine Learning Algorithms
Probabilistic Machine Learning: An Introduction (Adaptive Computation and Machine Learning series)
Cloud Computing for Machine Learning and Cognitive Applications A Machine Learning Approach
Machine Learning Interviews Kickstart Your Machine Learning and Data Career (Final)
Statistics for Machine Learning Implement Statistical methods used in Machine Learning using Python
Machine Learning Production Systems Engineering Machine Learning Models and Pipelines
Python Machine Learning A Complete Guide for Beginners on Machine Learning and Deep Learning with Python
Python Machine Learning Machine Learning and Deep Learning with Python, scikit-learn and Tensorflow
Machine Learning for Beginners An Introduction to Artificial Intelligence and Machine Learning
Machine Learning Interviews: Kickstart Your Machine Learning and Data Career
Practical Machine Learning with R and Python Machine Learning in Stereo, Third Edition
Ultimate MLOps for Machine Learning Models Use Real Case Studies to Efficiently Build, Deploy, and Scale Machine Learning Pipelines with MLOps
Ultimate MLOps for Machine Learning Models Use Real Case Studies to Efficiently Build, Deploy, and Scale Machine Learning Pipelines with MLOps
Machine Learning For Beginners A Math Free Introduction for Business and Individuals to Machine Learning, Big Data, Data Science, and Neural Networks
Hands-On Machine Learning with Scikit-Learn and Scientific Python Toolkits: A practical guide to implementing supervised and unsupervised machine learning algorithms in Python
Unsupervised Machine Learning in Python Master Data Science and Machine Learning with Cluster Analysis, Gaussian Mixture Models, and Principal Components Analysis
Hacker|s Guide to Machine Learning with Python Hands-on guide to solving real-world Machine Learning problems with Scikit-Learn, TensorFlow 2, and Keras
Fundamentals of Machine & Deep Learning A Complete Guide on Python Coding for Machine and Deep Learning with Practical Exercises for Learners (Sachan Book 102)
Machine Learning Hero Master Data Science with Python Essentials Machine Learning with Python Hands-On Guide from Beginner to Expert (Mastering the AI Revolution Book 1)
Python Machine Learning A Hands-On Beginner|s Guide to Effectively Understand Artificial Neural Networks and Machine Learning Using Python
Machine Learning for Emotion Analysis in Python: Build AI-powered tools for analyzing emotion using natural language processing and machine learning
Python Machine Learning Is The Complete Guide To Everything You Need To Know About Python Machine Learning Keras, Numpy, Scikit Learn, Tensorflow, With Useful Exercises and examples
The Best Python Programming Step-By-Step Beginners Guide: Easily Master Software engineering with Machine Learning, Data Structures, Syntax, Django Object-Oriented Programming, and AI application
Ultimate Machine Learning with ML.NET Build, Optimize, and Deploy Powerful Machine Learning Models for Data-Driven Insights with ML.NET, Azure Functions, and Web API
Python Machine Learning Understand Python Libraries (Keras, NumPy, Scikit-lear, TensorFlow) for Implementing Machine Learning Models in Order to Build Intelligent Systems
Data Science and Machine Learning Interview Questions Using R Crack the Data Scientist and Machine Learning Engineers Interviews with Ease
Data Science and Machine Learning Interview Questions Using R: Crack the Data Scientist and Machine Learning Engineers Interviews with Ease
Ultimate Machine Learning with ML.NET: Build, Optimize, and Deploy Powerful Machine Learning Models for Data-Driven Insights with ML.NET, Azure Functions, and Web API (English Edition)
Python Machine Learning for Beginners: Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Python Machine Learning for Beginners Unlocking the Power of Data. A Beginner|s Guide to Machine Learning with Python
Machine Learning Q and AI 30 Essential Questions and Answers on Machine Learning and AI
The Art of Machine Learning A Hands-On Guide to Machine Learning with R
The Art of Machine Learning: A Hands-On Guide to Machine Learning with R
The Art of Machine Learning A Hands-On Guide to Machine Learning with R
Machine Learning Q and AI: 30 Essential Questions and Answers on Machine Learning and AI
Machine Learning Q and AI 30 Essential Questions and Answers on Machine Learning and AI
Python Machine Learning: Leveraging Python for Implementing Machine Learning Algorithms and Applications (2023 Guide)