BOOKS - PROGRAMMING - Data Science and Machine Learning for Non-Programmers Using SAS...
Data Science and Machine Learning for Non-Programmers Using SAS Enterprise Miner - Dothang Truong 2024 PDF CRC Press BOOKS PROGRAMMING
ECO~19 kg CO²

2 TON

Views
46584

Telegram
 
Data Science and Machine Learning for Non-Programmers Using SAS Enterprise Miner
Author: Dothang Truong
Year: 2024
Pages: 590
Format: PDF
File size: 35.9 MB
Language: ENG



Pay with Telegram STARS
Each chapter includes practical exercises and case studies demonstrating how to apply these techniques in SAS Enterprise Miner As a nonprogrammer myself I have been frustrated by the lack of accessible resources available to learn Machine Learning. This book fills that void providing an engaging and interactive learning experience perfect for beginners or those new to the field. For example, Chapter 6 explores logistic regression using a dataset from the National Center for Education Statistics to predict college enrollment rates based on student characteristics. This chapter uses realworld datasets throughout the book to provide context and facilitate practical implementation. Home | About Us | Our Team Meet Our Dedicated Team of Experts At Data Science House, we are a team of passionate and experienced data scientists, machine learning engineers, and business analysts who are dedicated to helping our clients achieve their goals through the power of data-driven insights. Our diverse backgrounds and expertise allow us to tackle complex problems with creative solutions that deliver meaningful results. Here's a brief overview of our team: Abhijit Tannu Abhijit is the founder of Data Science House and has over 15 years of experience in data science, machine learning, and business intelligence. He has worked with various Fortune 500 companies and has a proven track record of developing and deploying scalable data pipelines, predictive models, and AI applications. Abhijit holds a PhD in Computer Science and an MBA from top-tier universities. Manisha Gohil Manisha is a seasoned data scientist with over 10 years of experience in machine learning, deep learning, and NLP.
Каждая глава включает практические упражнения и тематические исследования, демонстрирующие, как применять эти методы в SAS Enterprise Miner. Как непрограммист, я сам был разочарован отсутствием доступных ресурсов для обучения машинному обучению. Эта книга заполняет это пространство, предоставляя увлекательный и интерактивный опыт обучения, идеально подходящий для начинающих или новичков в этой области. Например, в главе 6 рассматривается логистическая регрессия с использованием набора данных из Национального центра статистики образования для прогнозирования показателей зачисления в колледжи на основе характеристик учащихся. В этой главе используются наборы данных realworld по всей книге, чтобы предоставить контекст и облегчить практическую реализацию. Главная
Chaque chapitre comprend des exercices pratiques et des études de cas montrant comment appliquer ces méthodes dans SAS Enterprise Miner. En tant que non programmeur, j'ai moi-même été déçu par le manque de ressources disponibles pour l'apprentissage automatique. Ce livre remplit cet espace en offrant une expérience d'apprentissage passionnante et interactive, idéale pour les débutants ou les débutants dans ce domaine. Par exemple, le chapitre 6 traite de la régression logistique en utilisant un ensemble de données du Centre national de statistique de l'éducation pour prédire les taux d'inscription dans les collèges en fonction des caractéristiques des élèves. Ce chapitre utilise des ensembles de données realworld dans tout le livre pour fournir un contexte et faciliter la mise en œuvre pratique. Accueil
Cada capítulo incluye ejercicios prácticos y estudios de casos que demuestran cómo aplicar estas técnicas en SAS Enterprise Miner. Como no programador, yo mismo estaba decepcionado por la falta de recursos disponibles para el aprendizaje automático. Este libro llena este espacio proporcionando una experiencia de aprendizaje fascinante e interactiva, ideal para principiantes o principiantes en este campo. Por ejemplo, en el capítulo 6 se examina la regresión logística utilizando un conjunto de datos del Centro Nacional de Estadística de la Educación para predecir las tasas de matriculación en los centros universitarios en función de las características de los alumnos. Este capítulo utiliza conjuntos de datos realworld en todo el libro para proporcionar contexto y facilitar la implementación práctica. Inicio
Cada capítulo inclui exercícios práticos e estudos de caso que demonstram como aplicar estes métodos no SAS Enterprise Miner. Como não-programador, eu mesmo fiquei desapontado com a falta de recursos disponíveis para o treinamento de máquina. Este livro preenche este espaço oferecendo uma experiência de aprendizagem fascinante e interativa ideal para iniciantes ou novatos nesta área. Por exemplo, o capítulo 6 aborda a regressão logística usando um conjunto de dados do Centro Nacional de Estatísticas Educacionais para prever as taxas de matrícula em faculdades baseadas nas características dos alunos. Este capítulo usa conjuntos de dados realworld em todo o livro para fornecer contexto e facilitar a implementação prática. Principal
Ogni capitolo include esercizi pratici e studi di caso che dimostrano come applicare questi metodi in SAS Enterprise Miner. Come non programmatore, sono rimasto deluso dalla mancanza di risorse per l'apprendimento automatico. Questo libro riempie questo spazio offrendo un'esperienza di formazione affascinante e interattiva ideale per principianti o principianti in questo campo. Il capitolo 6, ad esempio, considera la regressione logistica utilizzando un set di dati del Centro Nazionale di Statistica dell'Istruzione per prevedere l'iscrizione a college basati sulle caratteristiche degli studenti. Questo capitolo utilizza i set di dati realworld dell'intero libro per fornire il contesto e facilitare l'implementazione. Home
Jedes Kapitel enthält praktische Übungen und Fallstudien, die zeigen, wie diese Techniken in SAS Enterprise Miner angewendet werden. Als Nicht-Programmierer war ich selbst enttäuscht über den Mangel an verfügbaren Ressourcen, um maschinelles rnen zu lernen. Dieses Buch füllt diesen Raum und bietet eine unterhaltsame und interaktive rnerfahrung, ideal für Anfänger oder Anfänger in diesem Bereich. In Kapitel 6 wird beispielsweise die logistische Regression anhand eines Datensatzes des National Center for Education Statistics untersucht, um die Einschreibungsraten für Hochschulen basierend auf den Eigenschaften der Schüler vorherzusagen. In diesem Kapitel werden realworld-Datensätze im gesamten Buch verwendet, um Kontext zu bieten und die praktische Umsetzung zu erleichtern. Home
Każdy rozdział obejmuje praktyczne ćwiczenia i studia przypadków pokazujące, jak stosować te techniki w SAS Enterprise Miner. Jako nie-programista, sam byłem sfrustrowany brakiem dostępnych środków na szkolenie maszynowe. Ta książka wypełnia tę przestrzeń, zapewniając wciągające i interaktywne doświadczenie edukacyjne idealne dla początkujących lub początkujących w terenie. Na przykład, Rozdział 6 bada regresję logistyczną za pomocą zbioru danych z Narodowego Centrum Statystyki Edukacji, aby przewidzieć wskaźniki zapisu do uczelni w oparciu o cechy studenckie. Rozdział ten wykorzystuje zbiory danych realworld w całej książce, aby zapewnić kontekst i ułatwić praktyczne wdrożenie. Strona główna
כל פרק כולל תרגילי ידיים ומחקרים מדגימים כיצד ליישם את הטכניקות האלה ב-SAS Enterprise Miner. בתור לא מתכנת, אני עצמי הייתי מתוסכל מהיעדר משאבים זמינים הספר הזה ממלא את החלל הזה, מספק חוויה מלמדת מרתקת ואינטראקטיבית אידיאלית למתחילים או למתחילים בתחום. לדוגמה, פרק 6 בוחן רגרסיה לוגיסטית באמצעות נתונים מהמרכז הלאומי לסטטיסטיקה חינוכית כדי לחזות את שיעורי ההרשמה לקולג 'לפי מאפייני הסטודנטים. פרק זה משתמש במאגרי נתונים של העולם האמיתי לאורך כל הספר כדי לספק את ההקשר ולהקל על יישום מעשי.''
Her bölüm, bu tekniklerin SAS Enterprise Miner'da nasıl uygulanacağını gösteren uygulamalı alıştırmalar ve vaka çalışmaları içermektedir. Programcı olmayan biri olarak, makine öğrenimi eğitimi için mevcut kaynakların eksikliğinden dolayı hayal kırıklığına uğradım. Bu kitap bu alanı doldurur ve alana yeni başlayanlar veya yeni başlayanlar için ideal olan ilgi çekici ve etkileşimli bir öğrenme deneyimi sağlar. Örneğin, Bölüm 6, öğrenci özelliklerine dayalı üniversite kayıt oranlarını tahmin etmek için Ulusal Eğitim İstatistikleri Merkezi'nden bir veri seti kullanarak lojistik regresyonu inceler. Bu bölüm, bağlam sağlamak ve pratik uygulamayı kolaylaştırmak için kitap boyunca gerçek dünya veri kümelerini kullanır. Ana sayfa
يتضمن كل فصل تمارين عملية ودراسات حالة توضح كيفية تطبيق هذه التقنيات في شركة SAS Enterprise Miner. بصفتي غير مبرمج، شعرت بالإحباط بسبب نقص الموارد المتاحة لتدريب التعلم الآلي. يملأ هذا الكتاب هذه المساحة، ويوفر تجربة تعليمية جذابة وتفاعلية مثالية للمبتدئين أو المبتدئين في هذا المجال. على سبيل المثال، يفحص الفصل 6 الانحدار اللوجستي باستخدام مجموعة بيانات من المركز الوطني لإحصاءات التعليم للتنبؤ بمعدلات الالتحاق بالكلية بناءً على خصائص الطلاب. يستخدم هذا الفصل مجموعات بيانات العالم الحقيقي في جميع أنحاء الكتاب لتوفير السياق وتسهيل التنفيذ العملي. Home
각 장에는 SAS Enterprise Miner에 이러한 기술을 적용하는 방법을 보여주는 실습 연습 및 사례 연구가 포함됩니다. 프로그래머가 아닌 사람으로서 저는 머신 러닝 교육을위한 이용 가능한 리소스가 부족하여 좌절했습니다. 이 책은이 공간을 채우고 해당 분야의 초보자 또는 초보자에게 이상적인 매력적이고 대화식 학습 경험을 제공합니다. 예를 들어, 6 장에서는 국립 교육 통계 센터 (National Center for Education Statistics) 의 데이터 세트를 사용하여 물류 회귀를 조사하여 학생 특성에 따라 대학 등록률을 예측합니 이 장은 책 전체의 실제 데이터 세트를 사용하여 컨텍스트를 제공하고 실제 구현을 용이하게합니다. 홈
各章には、SAS Enterprise Minerでこれらのテクニックを適用する方法を実践する実践的な演習とケーススタディが含まれています。非プログラマーとして、私自身は機械学習トレーニングのリソースが不足していることに不満を抱いていました。この本はこのスペースを埋め、初心者や初心者に最適な魅力的でインタラクティブな学習体験を提供します。たとえば、第6章では、国立教育統計センターのデータセットを使用して、学生の特性に基づいて大学の入学率を予測するロジスティック回帰を検討します。この章では、文脈を提供し、実用的な実装を容易にするために、本書全体で現実世界のデータセットを使用します。ホーム

You may also be interested in:

PYTHON FOR BEGINNERS: A Complete Guide To Learn Programming, Data Science, Machine Learning And Coding Language Which Explain Step By Step Useful Tips And Tricks And Hands-On Exercises
Explainable Machine Learning for Geospatial Data Analysis A Data-Centric Approach
The Shape of Data: Geometry-Based Machine Learning and Data Analysis in R
Data Analytics and Machine Learning Navigating the Big Data Landscape
Data Analytics and Machine Learning Navigating the Big Data Landscape
Big Data, Data Mining, and Machine Learning Value Creation for Business Leaders and Practitioners
Disease Prediction using Machine Learning, Deep Learning and Data Analytics
Disease Prediction using Machine Learning, Deep Learning and Data Analytics
Data Analytics and Machine Learning: Navigating the Big Data Landscape (Studies in Big Data, 145)
Python for Data Science A Practical Guide to Master Python Programming and System Administration. Discover The Essentials of Machine Learning and Artificial Intelligent Using Python Code
Statistical and Machine-Learning Data Mining Techniques for Better Predictive Modeling and Analysis of Big Data, Third Edition
Hands-On Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from Unlabeled Data
Machine Learning and Deep Learning in Neuroimaging Data Analysis
Machine Learning and Deep Learning in Neuroimaging Data Analysis
Python: 3 books in 1 : Python basics for Beginners + Python Automation Techniques And Web Scraping + Python For Data Science And Machine Learning
Python Programming A complete beginners guide on python machine learning, data science and tools (Computer Programming Book 1)
PYTHON PROGRAMMING 2 book in 1 A complete guide from beginner to intermediate on python machine learning, data science, tools (Computer Programming 5)
Statistics, Data Mining and Machine Learning in Astronomy A Practical Python Guide for the Analysis of Survey Data, Updated Ed
Python Data Science: Deep Learning Guide for Beginners with Data Science. Python Programming and Crush Course.
Data Scientist Pocket Guide Over 600 Concepts, Terminologies, and Processes of Machine Learning and Deep Learning Assembled
Machine Learning: Fundamental Algorithms for Supervised and Unsupervised Learning With Real-World Applications (Advanced Data Analytics Book 1)
Data-Centric Machine Learning with Python: The ultimate guide to engineering and deploying high-quality models based on good data
Machine Learning and Data Mining for Sports Analytics: 9th International Workshop, MLSA 2022, Grenoble, France, September 19, 2022, Revised Selected … in Computer and Information Science, 1783)
Data Labeling in Machine Learning with Python: Explore modern ways to prepare labeled data for training and fine-tuning ML and generative AI models
Python for Beginners A Step by Step Guide to Python Programming, Data Science, and Predictive Model. A Practical Introduction to Machine Learning with Python
Python for Data Analysis From the Beginner to Expert Crash Course 3.0 that will Change your Life as a Digital Programmer Thanks to the Minimalism of this Manual. Deep Machine Learning and Big Data
Learning Data Science: Data Wrangling, Exploration, Visualization, and Modeling with Python
Learning Data Science Data Wrangling, Exploration, Visualization, and Modeling with Python (Final)
Learning Data Science Data Wrangling, Exploration, Visualization, and Modeling with Python (Final)
Python Programming A beginners’ guide to understand machine learning and master coding. Includes Smalltalk, Java, TCL, javascript, Perl, Scheme, Common Lisp, Data Science Analysis, C++, PHP & Rub
Simple Machine Learning for Programmers Beginner|s Intro to Using Machine Learning, Deep Learning, and Artificial Intelligence for Practical Applications
Machine Learning for Beginners A Complete and Phased Beginner’s Guide to Learning and Understanding Machine Learning and Artificial Intelligence Algoritms
Active Machine Learning with Python: Refine and elevate data quality over quantity with active learning
Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data (Princeton Series in Modern Observational Astronomy, 1)
Coding with Python Python for Data Analysis and Machine Learning, Let’s Make Data Talk
Machine Learning for Materials Discovery: Numerical Recipes and Practical Applications (Machine Intelligence for Materials Science)
Machine Learning and Data Mining
Training Data for Machine Learning
Data Protection The Wake of AI and Machine Learning
Dirty Data Processing for Machine Learning