BOOKS - PROGRAMMING - Exploratory Data Analysis with MATLAB
Exploratory Data Analysis with MATLAB - Wendy L. Martinez 2018 PDF Chapman and Hall/CRC BOOKS PROGRAMMING
ECO~23 kg CO²

2 TON

Views
84294

Telegram
 
Exploratory Data Analysis with MATLAB
Author: Wendy L. Martinez
Year: 2018
Pages: 616
Format: PDF
File size: 10 MB
Language: ENG



Pay with Telegram STARS
Book Description: Exploratory Data Analysis with MATLAB Author: John M. Chinneck, Richard J. P. H. Schmid, and David A. W. M. O'Connor Publication Date: 2018 Pages: 368 pages Publisher: Chapman and Hall/CRC Series: Chapman & Hall/CRC Mathematics Series Subjects: Science, Technology, Engineering, and Mathematics (STEM) Formats: Hardcover, Paperback, eBook Description: Exploratory Data Analysis (EDA) is an essential part of the data analysis process, providing a framework for understanding and visualizing complex data sets before making assumptions or generating hypotheses. With the increasing power of computational tools and the growth of large datasets, EDA has become even more critical for data scientists. This book provides a comprehensive introduction to EDA using MATLAB, covering both basic and advanced techniques. It includes practical examples and exercises to help readers master the methods presented. The text begins by introducing the basics of EDA, including data cleaning, data transformation, and exploratory plots. It then delves into more advanced topics such as non-parametric methods, dimensionality reduction, and time series analysis. The authors emphasize the importance of understanding the underlying statistical concepts and provide practical advice on how to use MATLAB to perform EDA.
Исследовательский анализ данных с MATLAB Автор: Джон М. Чиннек, Ричард Дж. П. Х. Шмид и Дэвид А. У. М. О'Коннор Дата публикации: 2018 Pages: 368 pages Publisher: Chapman and Hall/CRC Series: Chapman & Hall/CRC Mathematics Series Subjects: Форматы STEM (Science, Technology, Engineering, and Mathematics): Hardcover, Paperback, eExploratory Data Analysis (EDA) является важной частью процесса анализа данных, обеспечивая основу для понимания и визуализации сложных наборов данных, прежде чем делать предположения или генерировать гипотезы. С увеличением мощности вычислительных инструментов и ростом больших наборов данных EDA стал еще более критичным для специалистов по данным. В этой книге представлено полное введение в EDA с использованием MATLAB, охватывающее как основные, так и передовые методы. Она включает практические примеры и упражнения, помогающие читателям освоить представленные методы. Текст начинается с введения основ EDA, включая очистку данных, преобразование данных и поисковые графики. Затем он углубляется в более продвинутые темы, такие как непараметрические методы, уменьшение размерности и анализ временных рядов. Авторы подчеркивают важность понимания основных статистических концепций и предоставляют практические советы о том, как использовать MATLAB для выполнения EDA.
Analyse de données exploratoires avec MATLAB Auteur : John M. Chinneck, Richard J.P. H. Schmid et David A. W. M. O'Connor Date de publication : 2018 Pages: 368 pages Publisher: Chapman and Hall/CRC Series: Chapman & Hall/CRC Mathematics Series Subjects: s formats STEM (Science, Technologie, Engineering, and Mathematics) : Hardcover, Paperback, eExploratory Data Analysis (EDA) constituent une partie importante du processus d'analyse des données, fournissant une base pour comprendre et visualiser des ensembles de données complexes avant de formuler des hypothèses ou de générer des hypothèses. Avec l'augmentation de la puissance des outils de calcul et la croissance de grands ensembles de données, EDA est devenu encore plus critique pour les professionnels des données. Ce livre présente une introduction complète à l'EDA à l'aide de MATLAB, couvrant à la fois les pratiques de base et les meilleures pratiques. Il comprend des exemples pratiques et des exercices pour aider les lecteurs à apprendre les méthodes présentées. texte commence par l'introduction des bases de l'EDA, y compris le nettoyage des données, la conversion des données et les graphiques de recherche. Il s'oriente ensuite vers des sujets plus avancés tels que les méthodes non paramétriques, la réduction de la dimension et l'analyse des séries temporelles. s auteurs soulignent l'importance de comprendre les concepts statistiques de base et fournissent des conseils pratiques sur la façon d'utiliser MATLAB pour réaliser l'EDA.
Análisis de datos de investigación con MATLAB Autor: John M. Chinneck, Richard J. P. H. Schmid y David A. W. M. O'Connor Fecha de publicación: 2018 Pages: 368 pages Publisher: Chapman and Hall/CRC Series: Chapman & Hall/CRC Mathematics Series Subjects: Formatos STEM (Science, Technology, Engineering, and Mathematics): Hardcover, Paperback, eExploratory Data Analysis (EDA) es una parte importante del proceso de análisis de datos, proporcionando una base para la comprensión y visualización conjuntos de datos complejos antes de hacer suposiciones o generar hipótesis. Con el aumento de la potencia de las herramientas informáticas y el crecimiento de los grandes conjuntos de datos, EDA se ha vuelto aún más crítico para los profesionales de datos. Este libro presenta una introducción completa a la EDA utilizando MATLAB, cubriendo tanto las técnicas básicas como las avanzadas. Incluye ejemplos prácticos y ejercicios que ayudan a los lectores a dominar los métodos presentados. texto comienza con la introducción de los fundamentos de EDA, incluyendo limpieza de datos, conversión de datos y gráficos de búsqueda. Luego se profundiza en temas más avanzados como las técnicas no paramétricas, la reducción de la dimensión y el análisis de series temporales. autores subrayan la importancia de comprender los conceptos estadísticos básicos y ofrecen consejos prácticos sobre cómo utilizar MATLAB para realizar EDA.
Análise de dados com MATLAB Autor: John M. Chinneck, Richard J. H. Schmid e David A. W. M. O'Connor Data de publicação: 2018 Pages: 368 pages Publisher: Chapman and Hall/CRC Series: Chapman & Hall/CRC Mathematics Series Subjects: Formatos STEM (Science, Technology, Engineering, and Mathematics): Hardcover, Paperback, eExploratory Data Analisis (EDA) é uma parte importante do processo de análise de dados, fornecendo uma base para a compreensão e visualização de conjuntos complexos de dados antes de sugerir ou gerar hipóteses. Com o aumento da capacidade das ferramentas de processamento e o aumento dos conjuntos de dados, o EDA tornou-se ainda mais crítico para os especialistas em dados. Este livro apresenta uma introdução completa ao EDA com MATLAB, que abrange técnicas básicas e avançadas. Ele inclui exemplos práticos e exercícios que ajudam os leitores a aprender as técnicas apresentadas. O texto começa introduzindo os fundamentos do EDA, incluindo limpeza de dados, conversão de dados e gráficos de busca. Depois, aprofundou-se em temas mais avançados, tais como métodos não-aramétricos, redução de dimensões e análise de séries de tempo. Os autores destacam a importância de entender os principais conceitos estatísticos e fornecem dicas práticas sobre como usar o MATLAB para executar o EDA.
Analisi dei dati con MATLAB Autore: John M. Chinneck, Richard J. P. H. Schmid e David A. M. O'Connor Data di pubblicazione: 2018 Pages: 368 pages Publisher: Chapman and Hall/CRC Series: Chapman & Hall/CRC Mathematics Series Subjects: I formati STEM (Science, Technology, Engineering, and Mathematics): Hardcover, Paperback, Data Analysis (EDA) sono una parte importante del processo di analisi dei dati, fornendo una base per la comprensione e la visualizzazione di set di dati complessi prima di fare ipotesi o generare ipotesi. Con l'aumento della potenza degli strumenti di elaborazione e la crescita di grandi set di dati, EDA è diventato ancora più critico per gli esperti di dati. Questo libro fornisce un'introduzione completa all'EDA con MATLAB, che comprende sia le procedure di base che le best practice. Include esempi pratici e esercizi che aiutano i lettori a imparare i metodi presentati. Il testo inizia con l'introduzione di basi EDA, tra cui pulizia dei dati, conversione dei dati e grafica di ricerca. Poi si approfondisce su argomenti più avanzati come metodi non parametrici, riduzione della dimensione e analisi delle serie temporali. Gli autori sottolineano l'importanza di comprendere i concetti statistici di base e forniscono consigli pratici su come utilizzare MATLAB per eseguire l'EDA.
Explorative Datenanalyse mit MATLAB Autor: John M. Chinneck, Richard J. P. H. Schmid und David A. W. M. O'Connor Erscheinungsdatum: 2018 Pages: 368 pages Publisher: Chapman and Hall/CRC Series: Chapman & Hall/CRC Mathematics Series Subjects: MINT-Formate (Science, Technology, Engineering, and Mathematics): Hardcover, Paperback, eExploratory Data Analysis (EDA) ist ein wichtiger Teil des Datenanalyseprozesses und bietet eine Grundlage für das Verständnis und die Visualisierung komplexer Datensätze, bevor Annahmen getroffen oder Hypothesen generiert werden. Mit zunehmender Rechenleistung und dem Wachstum großer Datensätze ist EDA für Datenspezialisten noch kritischer geworden. Dieses Buch bietet eine vollständige Einführung in EDA mit MATLAB und deckt sowohl grundlegende als auch fortgeschrittene Techniken ab. Es enthält praktische Beispiele und Übungen, die den sern helfen, die vorgestellten Methoden zu beherrschen. Der Text beginnt mit der Einführung der EDA-Grundlagen, einschließlich Datenbereinigung, Datenkonvertierung und Suchgrafiken. Es geht dann tiefer in fortgeschrittenere Themen wie nicht-parametrische Methoden, Dimensionsreduktion und Zeitreihenanalyse. Die Autoren betonen die Bedeutung des Verständnisses grundlegender statistischer Konzepte und geben praktische Tipps zur Verwendung von MATLAB zur Durchführung von EDA.
''
MATLAB ile Keşifsel Veri Analizi John M. Chinnek, Richard J. P. H. Schmid ve David A. W. M. O'Connor Yayın Tarihi: 2018 Sayfalar: 368 sayfalar Yayıncı: Chapman and Hall/CRC Serisi: Chapman & Hall/CRC Matematik Serisi Konular: STEM (Bilim, Teknoloji, Mühendislik ve Matematik) formatları: Ciltli, Paperback, eExploratory Data Analysis (EDA), varsayımlar yapmadan veya hipotezler üretmeden önce karmaşık veri kümelerini anlamak ve görselleştirmek için bir çerçeve sağlayan veri analizi sürecinin önemli bir parçasıdır. Hesaplama araçlarının artan gücü ve büyük veri kümelerinin büyümesiyle, EDA veri bilimcileri için daha da kritik hale geldi. Bu kitap, MATLAB kullanarak EDA'ya hem temel hem de en iyi uygulamaları kapsayan eksiksiz bir giriş sunmaktadır. Okuyucuların sunulan yöntemleri öğrenmelerine yardımcı olacak pratik örnekler ve alıştırmalar içerir. Metin, veri temizleme, veri dönüşümü ve arama grafikleri dahil olmak üzere EDA'nın temellerini tanıtarak başlar. Daha sonra parametrik olmayan yöntemler, boyutsallık azaltma ve zaman serisi analizi gibi daha ileri konulara girer. Yazarlar, temel istatistiksel kavramları anlamanın önemini vurgulamakta ve EDA'yı gerçekleştirmek için MATLAB'ın nasıl kullanılacağı konusunda pratik tavsiyeler sunmaktadır.
تحليل البيانات الاستكشافية مع MATLAB بقلم جون إم تشينيك وريتشارد جيه بي إتش شميد وديفيد إيه دبليو إم أوكونور تاريخ النشر: 2018 الصفحات: 368 صفحة الناشر: Chapman and Hall/CRC Series: Chapman & Hall/CRC سلسلة الرياضيات الموضوعات: تنسيقات STEM (العلوم والتكنولوجيا والهندسة والرياضيات): الغلاف المقوى، الغلاف الورقي، تحليل البيانات الاستكشافية الإلكترونية (EDA) هو جزء مهم من عملية تحليل البيانات، ويوفر إطارًا لفهم وتصور مجموعات البيانات المعقدة قبل وضع الافتراضات أو توليد الفرضيات. مع القوة المتزايدة لأدوات الحوسبة ونمو مجموعات البيانات الكبيرة، أصبحت EDA أكثر أهمية لعلماء البيانات. يقدم هذا الكتاب مقدمة كاملة لـ EDA باستخدام MATLAB، والتي تغطي كلا من الممارسات الأساسية وأفضل الممارسات. يتضمن أمثلة عملية وتمارين لمساعدة القراء على إتقان الأساليب المقدمة. يبدأ النص بتقديم أساسيات EDA، بما في ذلك تنقية البيانات وتحويل البيانات ورسوم البحث. ثم يتعمق في موضوعات أكثر تقدمًا مثل الأساليب غير القياسية وتقليل الأبعاد وتحليل السلاسل الزمنية. يؤكد المؤلفون على أهمية فهم المفاهيم الإحصائية الأساسية وتقديم المشورة العملية حول كيفية استخدام MATLAB لأداء EDA.

You may also be interested in:

Intelligent Data Analysis From Data Gathering to Data Comprehension (The Wiley Series in Intelligent Signal and Data Processing)
Python Data Science The Ultimate Handbook for Beginners on How to Explore NumPy for Numerical Data, Pandas for Data Analysis, IPython, Scikit-Learn and Tensorflow for Machine Learning and Business
Understanding Results with Python 100 Drills for Data Analysis and Statistical Analysis
Understanding Results with Python: 100 Drills for Data Analysis and Statistical Analysis
Understanding Results with Python 100 Drills for Data Analysis and Statistical Analysis
Data Analysis in Qualitative Research: Theorizing with Abductive Analysis
Data Analysis In Microsoft Excel Guided Project - Healthcare Master Skills in Data Analysis and Excel A Healthcare Data Guided Project
Data Analysis In Microsoft Excel: Guided Project - Healthcare: Master Skills in Data Analysis and Excel: A Healthcare Data Guided Project
Data Analysis In Microsoft Excel Guided Project - Healthcare Master Skills in Data Analysis and Excel A Healthcare Data Guided Project
Key Labor Market Indicators: Analysis with Household Survey Data (Streamlined Analysis with ADePT Software)
Data Mining Approaches for Big Data and Sentiment Analysis in Social Media
Explainable Machine Learning for Geospatial Data Analysis A Data-Centric Approach
SQL for Data Analysis Advanced Techniques for Transforming Data into Insights (Final)
Network Security through Data Analysis From Data to Action, 2nd Edition
SQL for Data Analysis: Advanced Techniques for Transforming Data into Insights
Data Wrangling on AWS: Clean and organize complex data for analysis
The Shape of Data: Geometry-Based Machine Learning and Data Analysis in R
Behavioral Data Analysis with R and Python Customer-Driven Data for Real Business Results
Univariate, Bivariate, and Multivariate Statistics Using R Quantitative Tools for Data Analysis and Data Science
SQL for Data Analysis Advanced Techniques for Transforming Data into Insights (Early Release)
Behavioral Data Analysis with R and Python: Customer-Driven Data for Real Business Results
Python for Data Analysis Data Wrangling with Pandas, NumPy, and IPython, 2nd Edition
Computer Science in Sport: Modeling, Simulation, Data Analysis and Visualization of Sports-Related Data
Python for Data Analysis The Ultimate Beginner|s Guide to Data Analytics, Deep Learning
Computer Science in Sport Modeling, Simulation, Data Analysis and Visualization of Sports-Related Data
Python for Data Analysis Unlocking Insights and Driving Innovation with Powerful Data Techniques. 2 in 1 Guide
Data Analytics for Pandemics A COVID-19 Case Study (Intelligent Signal Processing and Data Analysis)
Python for Data Analysis: Unlocking Insights and Driving Innovation with Powerful Data Techniques. 2 in 1 Guide
Computer Science in Sport Modeling, Simulation, Data Analysis and Visualization of Sports-Related Data
Python for Data Analysis Unlocking Insights and Driving Innovation with Powerful Data Techniques. 2 in 1 Guide
Good, the Bad, and the Data: Shane the Lone Ethnographer|s Basic Guide to Qualitative Data Analysis
Hands-on Data Analysis and Visualization with Pandas Engineer, Analyse and Visualize Data, Using Powerful Python Libraries
Avoiding Data Pitfalls How to Steer Clear of Common Blunders When Working with Data and Presenting Analysis and Visualizations
Beginning Mathematica and Wolfram for Data Science: Applications in Data Analysis, Machine Learning, and Neural Networks
Statistical and Machine-Learning Data Mining Techniques for Better Predictive Modeling and Analysis of Big Data, Third Edition
Supply Chain Performance Evaluation: Application of Data Envelopment Analysis (Studies in Big Data Book 122)
Statistics, Data Mining and Machine Learning in Astronomy A Practical Python Guide for the Analysis of Survey Data, Updated Ed
Data Envelopment Analysis with GAMS: A Handbook on Productivity Analysis and Performance Measurement (International Series in Operations Research and Management Science, 338)
Automated Data Analysis Using Excel (Chapman & Hall/CRC Data Mining and Knowledge Discovery Series) Second Edition
Circuit Analysis II with MATLAB Applications