BOOKS - EQUIPMENT - Pattern Recognition and Image Processing (Woodhead Publishing Ser...
Pattern Recognition and Image Processing (Woodhead Publishing Series in Electronic and Optical Materials) - Daisheng Luo 1998 PDF Woodhead Publishing BOOKS EQUIPMENT
ECO~19 kg CO²

3 TON

Views
926007

Telegram
 
Pattern Recognition and Image Processing (Woodhead Publishing Series in Electronic and Optical Materials)
Author: Daisheng Luo
Year: 1998
Format: PDF
File size: 89 MB
Language: ENG



Pay with Telegram STARS
The book provides an introduction to the theory and practice of image processing and pattern recognition. It covers topics like image processing techniques feature extraction and classification using neural networks and fuzzy logic. Book Description: Pattern Recognition and Image Processing Woodhead Publishing Series in Electronic and Optical Materials Daisheng Luo 1998 Pages: Publisher: Woodhead Publishing Summary: In this book, [Insert Author's Name] delivers a comprehensive course module for advanced undergraduates, postgraduates, and researchers in the field of electronics, computing, medical imaging, or any other discipline where the study of identification and classification of objects through electronics-driven image processing and pattern recognition is relevant. The book begins with an overview of object analysis, which involves the use of image processing techniques to detect objects and extract their features before identifying and classifying them using pattern recognition methods. The applications of these techniques are vast and varied, covering everything from the recognition of objects in satellite images (enabling the discrimination between different types of objects such as fishing boats, merchant ships, or warships) to the detection of cancers, ulcers, and other medical conditions.
''
この本には、画像処理とパターン認識の理論と実践の紹介が含まれています。画像処理技術、特徴抽出、ニューラルネットワークやファジーロジックを用いた分類などのトピックをカバーしています。電子および光学材料Daisheng Luo 1998ページの出版物のパターン認識および画像処理木頭シリーズ: 出版社:Woodhead Publishing Summary:本書では、電子画像処理とパターン認識による物体識別と分類の研究が関連する電子工学、コンピューティング、医療画像、またはその他の分野の高度な学部、大学院、研究学生のための包括的なコースモジュールを提供します。まずは、画像処理技術を用いて物体を検出し、その特徴を抽出してパターン認識技術を用いて識別し分類することから始まります。これらの方法の応用は広範かつ多様であり、衛星画像中の物体の認識(漁船、商船、軍艦などの異なる種類の物体を区別できる)から癌の検出、潰瘍およびその他の病状までを網羅している。

You may also be interested in:

Machine Learning for Emotion Analysis in Python: Build AI-powered tools for analyzing emotion using natural language processing and machine learning
Health Information Processing: 8th China Conference, CHIP 2022, Hangzhou, China, October 21-23, 2022, Revised Selected Papers (Communications in Computer and Information Science)
Real-Time Data Acquisition in Human Physiology: Real-Time Acquisition, Processing, and Interpretation-A MATLAB-Based Approach
Advances in Enterprise Engineering XVI: 12th Enterprise Engineering Working Conference, EEWC 2022, Leusden, The Netherlands, November 2-3, 2022, … Notes in Business Information Processing)
Stream Analytics with Microsoft Azure Real-time data processing for quick insights using Azure Stream Analytics
Graphic Guide to Python with Processing.py 3 (Graphic Guide to Programming)
Graphic Guide to Python: with Processing.py 3 (Graphic Guide to Programming)
Intelligent Data Analysis From Data Gathering to Data Comprehension (The Wiley Series in Intelligent Signal and Data Processing)
Mastering Large Language Models with Python: Unleash the Power of Advanced Natural Language Processing for Enterprise Innovation and Efficiency Using Large … Models (LLMs) with Python (English E
Graphic Guide to R with Processing.R 4 (Graphic Guide to Programming)
Euro-Par 2022: Parallel Processing Workshops: Euro-Par 2022 International Workshops, Glasgow, UK, August 22-26, 2022, Revised Selected Papers (Lecture Notes in Computer Science)
Mastering Large Language Models with Python Unleash the Power of Advanced Natural Language Processing for Enterprise Innovation and Efficiency Using Large Language Models (LLMs) with Python
Mastering Large Language Models with Python Unleash the Power of Advanced Natural Language Processing for Enterprise Innovation and Efficiency Using Large Language Models (LLMs) with Python
Deep Learning for Natural Language Processing Develop Deep Learning Models for Natural Language in Python