BOOKS - Data-Driven Modelling with Fuzzy Sets Embracing Uncertainty
Data-Driven Modelling with Fuzzy Sets Embracing Uncertainty - Said Broumi, D. Nagarajan, Michael Gr. Voskoglou, S.A. Edalatpanah 2024 PDF CRC Press BOOKS
ECO~15 kg CO²

1 TON

Views
43184

Telegram
 
Data-Driven Modelling with Fuzzy Sets Embracing Uncertainty
Author: Said Broumi, D. Nagarajan, Michael Gr. Voskoglou, S.A. Edalatpanah
Year: 2024
Pages: 348
Format: PDF
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
A. K. Bhatia. The book "Data-Driven Modeling with Fuzzy Sets Embracing Uncertainty" by Dr. A. K. Bhatia is a groundbreaking work that explores the intersection of data science, fuzzy logic, and uncertainty analysis. The author presents a comprehensive framework for modeling complex systems using fuzzy sets and probability theory, providing readers with a powerful toolkit for tackling real-world problems. This book is essential reading for anyone interested in understanding how data-driven modeling can be used to embrace uncertainty and drive decision-making in a rapidly changing world. The book begins by introducing the concept of fuzzy sets, which are sets with imprecise or ambiguous boundaries. These sets are ubiquitous in real-world data, where exact values are often difficult to obtain. The author demonstrates how fuzzy sets can be combined with probability theory to create robust models that capture the inherent uncertainty of complex systems.
А. К. Бхатия. Книга «Data-Driven Modeling with Fuzzy Sets Ambracing Uncertainty» доктора А. К. Бхатия является новаторской работой, которая исследует пересечение науки о данных, нечеткой логики и анализа неопределенностей. Автор представляет комплексную основу для моделирования сложных систем с использованием нечетких множеств и теории вероятностей, предоставляя читателям мощный инструментарий для решения реальных проблем. Эта книга является важным чтением для всех, кто заинтересован в понимании того, как моделирование на основе данных может использоваться для принятия неопределенности и принятия решений в быстро меняющемся мире. Книга начинается с введения понятия нечётких множеств, представляющих собой множества с неточными или неоднозначными границами. Эти наборы повсеместно распространены в реальных данных, где точные значения часто трудно получить. Автор демонстрирует, как нечёткие множества могут сочетаться с теорией вероятностей для создания надёжных моделей, улавливающих присущую сложным системам неопределённость.
A. K. Bhatia. livre « Data-Driven Modeling with Fuzzy Sets Ambracing Uncertainty » du Dr A. K. Bhatia est un travail novateur qui explore l'intersection de la science des données, de la logique floue et de l'analyse des incertitudes. L'auteur présente un cadre complet pour la modélisation de systèmes complexes en utilisant des ensembles flous et la théorie des probabilités, fournissant aux lecteurs une boîte à outils puissante pour résoudre des problèmes réels. Ce livre est une lecture importante pour tous ceux qui sont intéressés à comprendre comment la modélisation basée sur les données peut être utilisée pour prendre des incertitudes et prendre des décisions dans un monde en mutation rapide. livre commence par l'introduction de la notion d'ensembles impairs, qui sont des ensembles avec des limites inexactes ou ambiguës. Ces ensembles sont omniprésents dans les données réelles, où les valeurs exactes sont souvent difficiles à obtenir. L'auteur montre comment des ensembles impairs peuvent être combinés avec la théorie des probabilités pour créer des modèles fiables qui captent l'incertitude inhérente aux systèmes complexes.
A. C. Bhatia. libro «Data-Driven Modeling with Fuzzy Sets Ambracing Uncertainty» del Dr. A. K. Bhatia es un trabajo pionero que explora la intersección de la ciencia de datos, la lógica difusa y el análisis de incertidumbres. autor presenta un marco complejo para modelar sistemas complejos utilizando conjuntos borrosos y teoría de probabilidades, proporcionando a los lectores una poderosa caja de herramientas para resolver problemas reales. Este libro es una lectura importante para todos los interesados en entender cómo las simulaciones basadas en datos se pueden utilizar para tomar decisiones y tomar decisiones en un mundo que cambia rápidamente. libro comienza introduciendo el concepto de conjuntos impares, que son conjuntos con límites imprecisos o ambiguos. Estos conjuntos son omnipresentes en los datos reales, donde los valores exactos a menudo son difíciles de obtener. autor demuestra cómo los conjuntos impares pueden combinarse con la teoría de la probabilidad para crear modelos confiables que capturen la incertidumbre inherente a los sistemas complejos.
A. C. Bhatia. Il libro «Data-Driven Modeling with Fuzzy Set Ambracing Uncertainty» del dottor A. C. Bhatia è un lavoro innovativo che esplora l'intersezione tra la scienza dei dati, la logica impreziosita e l'analisi delle incertezze. L'autore offre una base completa per la simulazione di sistemi complessi utilizzando molteplici varietà e una teoria delle probabilità, fornendo ai lettori potenti strumenti per risolvere i problemi reali. Questo libro è una lettura importante per tutti coloro che sono interessati a capire come la simulazione basata sui dati può essere utilizzata per prendere incertezze e prendere decisioni in un mondo in rapida evoluzione. Il libro inizia introducendo il concetto di molteplicità dispari, che sono molteplici con limiti inesatti o ambigui. Questi set sono diffusi ovunque nei dati reali, dove i valori precisi sono spesso difficili da ottenere. L'autore dimostra come i molteplici dispari possano essere combinati con la teoria delle probabilità per creare modelli affidabili che catturano l'incertezza dei sistemi complessi.
A. K. Bhatia. Das Buch „Data-Driven Modeling with Fuzzy Sets Ambracing Uncertainty“ von Dr. A. K. Bhatia ist eine bahnbrechende Arbeit, die die Schnittstelle von Datenwissenschaft, Fuzzy-Logik und Unsicherheitsanalyse untersucht. Der Autor stellt eine umfassende Grundlage für die Modellierung komplexer Systeme unter Verwendung von Fuzzy-Sets und Wahrscheinlichkeitstheorie vor und bietet den sern ein leistungsfähiges Toolkit zur Lösung realer Probleme. Dieses Buch ist eine wichtige ktüre für alle, die daran interessiert sind, zu verstehen, wie datenbasierte Modellierung verwendet werden kann, um Unsicherheiten und Entscheidungen in einer sich schnell verändernden Welt zu treffen. Das Buch beginnt mit der Einführung des Konzepts der unscharfen Mengen, die Mengen mit ungenauen oder mehrdeutigen Grenzen sind. Diese Sätze sind in realen Daten allgegenwärtig, wo genaue Werte oft schwer zu bekommen sind. Der Autor zeigt, wie Fuzzy-Sets mit Wahrscheinlichkeitstheorie kombiniert werden können, um robuste Modelle zu erstellen, die die inhärente Unsicherheit komplexer Systeme erfassen.
א.ק. בתיה. ד "ר א. קיי. בתיה (באנגלית: Doctor A. K. Bhatia's Modeling with Puzzy Sets Embrating Investment) היא עבודה פורצת דרך החוקרת את הצטלבות מדעי המידע, את ההיגיון המעורפל ואת ניתוח אי הוודאות. המחבר מציג מסגרת מקיפה למידול מערכות מורכבות באמצעות סטים מעורפלים ותאוריית ההסתברות, המספקים לקוראים ערכת כלים רבת עוצמה לפתרון בעיות בעולם האמיתי. הספר הזה הוא קריאה חשובה לכל מי שמעוניין להבין כיצד מודלים מונעי נתונים יכולים לשמש לחוסר ודאות וקבלת החלטות בעולם שמשתנה במהירות. הספר מתחיל עם ההקדמה של המושג של סטים מעורפלים, שהם סטים עם גבולות לא מדויקים או מעורפלים. סטים אלה הם בכל מקום בנתונים בעולם האמיתי, שבו ערכים מדויקים הם לעתים קרובות קשים להשגה. המחבר מדגים כיצד ניתן לשלב מערכות מעורפלות עם תורת ההסתברות ליצירת מודלים מהימנים הלוכדים את אי הוודאות הטבועה במערכות מורכבות.''
A.K. Bhatia. Dr. A. K. Bhatia'nın "Belirsizliği Kucaklayan Bulanık Kümelerle Veri Odaklı Modelleme" veri bilimi, bulanık mantık ve belirsizlik analizinin kesişimini araştıran çığır açan bir çalışmadır. Yazar, bulanık kümeler ve olasılık teorisi kullanarak karmaşık sistemleri modellemek için kapsamlı bir çerçeve sunar ve okuyuculara gerçek dünya problemlerini çözmek için güçlü bir araç seti sağlar. Bu kitap, hızla değişen bir dünyada veri odaklı modellemenin belirsizlik ve karar verme için nasıl kullanılabileceğini anlamakla ilgilenen herkes için önemli bir okumadır. Kitap, yanlış veya belirsiz sınırlara sahip kümeler olan bulanık kümeler kavramının tanıtılmasıyla başlar. Bu kümeler, kesin değerlerin elde edilmesinin genellikle zor olduğu gerçek dünya verilerinde her yerde bulunur. Yazar, bulanık kümelerin, karmaşık sistemlerde bulunan belirsizliği yakalayan güvenilir modeller oluşturmak için olasılık teorisi ile nasıl birleştirilebileceğini göstermektedir.
A.K. Bhatia. يعد «النمذجة القائمة على البيانات مع مجموعات غامضة تحتضن عدم اليقين» للدكتور أ. ك. بهاتيا عملاً رائدًا يستكشف تقاطع علم البيانات والمنطق الغامض وتحليل عدم اليقين. يقدم المؤلف إطارًا شاملاً لنمذجة الأنظمة المعقدة باستخدام مجموعات غامضة ونظرية الاحتمالات، مما يوفر للقراء مجموعة أدوات قوية لحل مشاكل العالم الحقيقي. يعد هذا الكتاب قراءة مهمة لأي شخص مهتم بفهم كيفية استخدام النمذجة القائمة على البيانات في حالة عدم اليقين واتخاذ القرار في عالم سريع التغير. يبدأ الكتاب بإدخال مفهوم المجموعات الغامضة، وهي مجموعات ذات حدود غير دقيقة أو غامضة. هذه المجموعات موجودة في كل مكان في بيانات العالم الحقيقي، حيث يصعب الحصول على القيم الدقيقة في كثير من الأحيان. يوضح المؤلف كيف يمكن دمج المجموعات الغامضة مع نظرية الاحتمالات لإنشاء نماذج موثوقة تلتقط عدم اليقين الكامن في الأنظمة المعقدة.
A.K. Bhatia。A. K. Bhatia博士的著作《與Fuzzy Sets Ambracing Uncertainty進行數據驅動建模》是一篇開創性的著作,探討了數據科學,模糊邏輯和不確定性分析的交集。作者提出了使用模糊集和概率論對復雜系統進行建模的綜合框架,為讀者提供了解決實際問題的強大工具包。這本書對於任何有興趣了解如何利用基於數據的建模來在快速變化的世界中做出不確定性和決策的人來說都是重要的閱讀。該書首先介紹了奇數集的概念,這些奇數集是具有不準確或模棱兩可邊界的集合。這些集合在實際數據中無處不在,通常很難獲得確切的值。作者演示了奇數集如何與概率論相結合,以創建可靠模型,從而捕獲復雜系統固有的不確定性。

You may also be interested in:

Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control
Data Driven Decisions Systems Engineering to Understand Corporate Value and Intangible Assets
Building Event-Driven Microservices Leveraging Organizational Data at Scale First Edition
Data Driven Decisions Systems Engineering to Understand Corporate Value and Intangible Assets
The CFO in Pole Position: Leading next-generation decision-making in a data-driven organization
Creating Data-Driven Web Sites An Introduction to HTML, CSS, PHP, and MySQL
Artificial Intelligence and Internet of Things based Augmented Trends for Data Driven Systems
Demystifying Artificial Intelligence: Symbolic, Data-Driven, Statistical and Ethical AI (De Gruyter STEM)
Artificial Intelligence and Internet of Things based Augmented Trends for Data Driven Systems
Artificial Intelligence in Workplace Health and Safety Data-Driven Technologies, Tools and Techniques
Beginning Azure Cognitive Services: Data-Driven Decision Making Through Artificial Intelligence
Architecting Data and Machine Learning Platforms: Enable Analytics and AI-Driven Innovation in the Cloud
Data-Driven HR: How to Use Analytics and Metrics to Drive Performance by Bernard Marr, Kogan Page
Hadoop Data Processing and Modelling
Architecting Data and Machine Learning Platforms Enable Analytics and AI-Driven Innovation in the Cloud (Final)
The Principal as Data Driven Leader by Ontario Principals| Council [Corwin,2008] (Paperback)
Artificial Intelligence and Machine Learning for Business A No-Nonsense Guide to Data Driven Technologies, Third Edition
Optimization and Computing using Intelligent Data-Driven Approaches for Decision-Making Artificial Intelligence Applications
Architecting Data and Machine Learning Platforms Enable Analytics and AI-Driven Innovation in the Cloud (Final)
Optimization and Computing using Intelligent Data-Driven Approaches for Decision-Making Artificial Intelligence Applications
CRC Handbook of Basic Tables for Chemical Analysis Data-Driven Methods and Interpretation, Fourth Edition
Machine Learning for Civil and Environmental Engineers A Practical Approach to Data-driven Analysis, Explainability, and Causality
The Family Firm: A Data-Driven Guide to Better Decision Making in the Early School Years (The ParentData Series)
Artificial Intelligence in Prescriptive Analytics Innovations in Decision Analysis, Intelligent Optimization, and Data-Driven Decisions
Machine Learning for Civil and Environmental Engineers: A Practical Approach to Data-Driven Analysis, Explainability, and Causality
Deciphering Data Architectures Choosing Between a Modern Data Warehouse, Data Fabric, Data Lakehouse, and Data Mesh
Deciphering Data Architectures Choosing Between a Modern Data Warehouse, Data Fabric, Data Lakehouse, and Data Mesh
Knowledge Modelling and Big Data Analytics in Healthcare: Advances and Applications
Cyber-Physical Systems Data Science, Modelling and Software Optimization
Multimedia-enabled Sensors in IoT Data Delivery and Traffic Modelling
The Application of Airborne Lidar Data in the Modelling of 3D Urban Landscape Ecology
Modern Statistics with R From Wrangling and Exploring Data to Inference and Predictive Modelling Second Edition
Modern Statistics with R From Wrangling and Exploring Data to Inference and Predictive Modelling Second Edition
Usability and User Experience Design The Comprehensive Guide to Data-Driven UX Design
Usability and User Experience Design The Comprehensive Guide to Data-Driven UX Design
Usability and User Experience Design: The Comprehensive Guide to Data-Driven UX Design
Digital Analytics Data Driven Decision Making in Digital World
Court on Trial: A Data-Driven Account of the Supreme Court of India
Python for Finance Mastering Data-Driven Finance, 2nd Edition
Analytical Skills for AI and Data Science Building Skills for an AI-Driven Enterprise