BOOKS - Machine Learning with Noisy Labels Definitions, Theory, Techniques and Soluti...
Machine Learning with Noisy Labels Definitions, Theory, Techniques and Solutions - Gustavo Carneiro 2024 EPUB Academic Press/Elsevier BOOKS
ECO~15 kg CO²

1 TON

Views
32080

Telegram
 
Machine Learning with Noisy Labels Definitions, Theory, Techniques and Solutions
Author: Gustavo Carneiro
Year: 2024
Pages: 312
Format: EPUB
File size: 43.5 MB
Language: ENG



Pay with Telegram STARS
Machine Learning with Noisy Labels: Definitions, Theory, Techniques, and Solutions The book "Machine Learning with Noisy Labels" provides a comprehensive overview of the challenges and solutions for dealing with noisy labels in machine learning. The author, Yaser Sheikh, is a renowned expert in the field of computer vision and machine learning, and this book offers a thorough understanding of the various definitions, theories, techniques, and solutions for addressing noisy labels in machine learning. The book begins by defining what noisy labels are and their impact on machine learning algorithms. It explains how noisy labels can lead to biased models that perpetuate errors, resulting in poor performance and incorrect predictions. The author then delves into the theoretical foundations of machine learning with noisy labels, discussing the underlying principles and mathematical formulations that govern the process. The book covers several techniques for dealing with noisy labels, including noise-tolerant loss functions, robust optimization methods, and ensemble learning approaches. These techniques are presented in a clear and concise manner, making it easy for readers to understand and apply them in real-world applications. Additionally, the book explores the limitations and trade-offs of each technique, providing a balanced perspective on their effectiveness.
Машинное обучение с шумными метками: определения, теория, методы и решения В книге «Машинное обучение с шумными метками» представлен всесторонний обзор проблем и решений для работы с шумными метками в машинном обучении. Автор, Ясер Шейх, является известным экспертом в области компьютерного зрения и машинного обучения, и эта книга предлагает полное понимание различных определений, теорий, методов и решений для обращения к шумным меткам в машинном обучении. Книга начинается с определения того, что такое шумные метки и их влияние на алгоритмы машинного обучения. Он объясняет, как шумные этикетки могут привести к предвзятым моделям, которые увековечивают ошибки, что приводит к низкой производительности и неверным прогнозам. Затем автор углубляется в теоретические основы машинного обучения с шумными метками, обсуждая основополагающие принципы и математические формулировки, управляющие процессом. Книга охватывает несколько техник работы с шумными метками, включая функции потери, устойчивые к шуму, надежные методы оптимизации и подходы к обучению ансамблей. Эти методы представлены в ясной и сжатой форме, что позволяет читателям легко понимать и применять их в реальных приложениях. Кроме того, книга исследует ограничения и компромиссы каждой техники, обеспечивая сбалансированный взгляд на их эффективность.
''

You may also be interested in:

Machine Learning for Beginners A Math Guide to Mastering Deep Learning and Business Application. Understand How Artificial Intelligence, Data Science, and Neural Networks Work Through Real Examples
Machine Learning With Python 3 books in 1 Hands-On Learning for Beginners+An in-Depth Guide Beyond the Basics+A Practical Guide for Experts
Learning Google Cloud Vertex AI: Build, deploy, and manage machine learning models with Vertex AI (English Edition)
Learn AI with Python Explore Machine Learning and Deep Learning techniques for Building Smart AI Systems Using Scikit-Learn
Agricultural Informatics Automation Using the IoT and Machine Learning (Advances in Learning Analytics for Intelligent Cloud-IoT Systems)
Quantum AI Machine Learning and Deep Learning for Everyone A Beginners Guide to Unlocking Business Opportunities by Leveraging the power of AI in Quantum Age
Quantum AI Machine Learning and Deep Learning for Everyone A Beginners Guide to Unlocking Business Opportunities by Leveraging the power of AI in Quantum Age
Artificial Intelligence For Business How Your Company Can Make More Profit with Machine Learning, Data Science, Big Data, and Deep Learning
Artificial Intelligence 4 books in 1 AI For Beginners + AI For Business + Machine Learning For Beginners + Machine Learning And Artificial Intelligence
Learning Pandas 2.0: A Comprehensive Guide to Data Manipulation and Analysis for Data Scientists and Machine Learning Professionals
Machine Learning For Beginners Guide Algorithms Supervised & Unsupervsied Learning. Decision Tree & Random Forest Introduction
Learning Google Cloud Vertex AI Build, deploy, and manage machine learning models with Vertex AI
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Human-in-the-Loop Machine Learning Active learning, annotation and human-computer interaction (MEAP)
Deep Learning for Finance Creating Machine & Deep Learning Models for Trading in Python
Active Machine Learning with Python: Refine and elevate data quality over quantity with active learning
Learning Google Cloud Vertex AI Build, deploy, and manage machine learning models with Vertex AI
From Machine Learning To Deep Learning
Learn AI with Python: Explore Machine Learning and Deep Learning techniques for Building Smart AI Systems Using Scikit-Learn, NLTK, NeuroLab, and Keras
Learn Autonomous Programming with Python Utilize Python|s capabilities in Artificial Intelligence, Machine Learning, Deep Learning and robotic process automation
Deep Learning and AI Superhero Mastering TensorFlow, Keras, and PyTorch Advanced Machine Learning and AI, Neural Networks, and Real-World Projects (Mastering the AI Revolution)
Learn Autonomous Programming with Python Utilize Python|s capabilities in Artificial Intelligence, Machine Learning, Deep Learning and robotic process automation
Python Programming The Crash Course for Python – Learn the Secrets of Machine Learning, Data Science Analysis and Artificial Intelligence. Introduction to Deep Learning for Beginners
Grokking Algorithms Simple and Effective Methods to Grokking Deep Learning and Machine Learning
Machine Learning and Deep Learning in Computational Toxicology (Computational Methods in Engineering and the Sciences)
Python Programming The Crash Course for Python Projects – Learn the Secrets of Machine Learning, Data Science Analysis and Artificial Intelligence. Introduction to Deep Learning for Beginners
Machine Vision Inspection Systems Machine Learning-Based Approaches (Machine Vision Inspection Systems, Volume 2)
Learn Autonomous Programming with Python: Utilize Python|s capabilities in artificial intelligence, machine learning, deep learning and robotic process automation (English Edition)
Practical Mathematics for AI and Deep Learning: A Concise yet In-Depth Guide on Fundamentals of Computer Vision, NLP, Complex Deep Neural Networks and Machine Learning (English Edition)
Supervised Machine Learning with Python A Comprehensive guide to Supervised Learning for 2024
Supervised Machine Learning with Python: A Comprehensive guide to Supervised Learning for 2024
Supervised Machine Learning with Python A Comprehensive guide to Supervised Learning for 2024
Python Programming, Deep Learning 3 Books in 1 A Complete Guide for Beginners, Python Coding for AI, Neural Networks, & Machine Learning, Data Science/Analysis with Practical Exercises for Learners
Learning OpenCV 5 Computer Vision with Python, Fourth Edition: Tackle computer vision and machine learning with the newest tools, techniques and algorithms
Machine Learning Techniques and Analytics for Cloud Security (Advances in Learning Analytics for Intelligent Cloud-IoT Systems)
MACHINE LEARNING
Machine Learning: The New AI
Machine Learning The New AI
Machine Learning
Python Programming, Deep Learning: 3 Books in 1: A Complete Guide for Beginners, Python Coding for AI, Neural Networks, and Machine Learning, Data Science Analysis … Learners (Python Programming