BOOKS - Astronomical Python An introduction to modern scientific programming
Astronomical Python An introduction to modern scientific programming - Imad Pasha 2024 PDF | EPUB IOP Publishing BOOKS
ECO~15 kg CO²

1 TON

Views
54960

Telegram
 
Astronomical Python An introduction to modern scientific programming
Author: Imad Pasha
Year: 2024
Pages: 333
Format: PDF | EPUB
File size: 48.1 MB
Language: ENG



Pay with Telegram STARS
Book Description: "Astronomical Python: An Introduction to Modern Scientific Programming" is a comprehensive guide that provides readers with a solid understanding of the fundamentals of scientific computing using Python. The book covers the basics of Python programming, data analysis, visualization, and machine learning techniques, all within the context of astronomy and astrophysics. It is designed for students, researchers, and educators who want to learn how to use Python for scientific computing and data analysis in astronomy and related fields. The book begins by introducing the reader to the basics of Python programming, including variables, data types, loops, functions, and modules. It then delves into more advanced topics such as data structures, object-oriented programming, and file input/output operations. The second half of the book focuses on scientific computing concepts, including numerical methods, signal processing, optimization, and statistics. The final chapters cover data visualization and machine learning techniques, providing readers with a well-rounded understanding of the tools and techniques needed for scientific computing in Python. Throughout the book, the authors provide practical examples and exercises to help readers reinforce their understanding of the material. They also include case studies that demonstrate the application of Python programming in real-world astronomical research projects.
«Astronomical Python: An Introduction to Modern Scientific Programming» (Астрономический Python: Введение в современное научное программирование) является всеобъемлющим руководством, которое дает читателям твердое понимание основ научных вычислений с использованием Python. Книга охватывает основы программирования на Python, анализ данных, визуализацию и методы машинного обучения, все в контексте астрономии и астрофизики. Он предназначен для студентов, исследователей и преподавателей, которые хотят научиться использовать Python для научных вычислений и анализа данных в астрономии и смежных областях. Книга начинается с ознакомления читателя с основами программирования на Python, включая переменные, типы данных, циклы, функции и модули. Затем он углубляется в более продвинутые темы, такие как структуры данных, объектно-ориентированное программирование и операции ввода/вывода файлов. Вторая половина книги посвящена концепциям научных вычислений, включая численные методы, обработку сигналов, оптимизацию и статистику. Заключительные главы охватывают методы визуализации данных и машинного обучения, предоставляя читателям полное понимание инструментов и методов, необходимых для научных вычислений на Python. На протяжении всей книги авторы приводят практические примеры и упражнения, чтобы помочь читателям укрепить свое понимание материала. Они также включают в себя тематические исследования, которые демонстрируют применение программирования на Python в реальных астрономических исследовательских проектах.
''

You may also be interested in:

Python for Kids A Playful Introduction to Programming, 2nd Edition
Introduction to Python Programming and Data Structures, 3rd Edition
Introduction to Prescriptive AI: A Primer for Decision Intelligence Solutioning with Python
Introduction to Deep Learning with complete Python and TensorFlow examples
Natural Language Processing with Python and spaCy A Practical Introduction
Reinforcement Learning for Finance A Python-Based Introduction (Final Release)
Practical Programming An Introduction to Computer Science Using Python 3.6, 3rd Edition
Introduction to Deep Learning for Engineers Using Python and Google Cloud Platform
Operations Research for Social Good A Practitioner’s Introduction Using SAS and Python
A Hands-On Introduction to Essential Python Libraries and Frameworks (With Code Samples)
Reinforcement Learning for Finance A Python-Based Introduction (Early Release)
Introduction to Numerical Programming A Practical Guide for Scientists and Engineers Using Python and C/C++
Reinforcement Learning for Finance A Python-Based Introduction (Early Release)
Introduction to Deep Learning and Neural Networks with Python™ A Practical Guide
Operations Research for Social Good A Practitioner’s Introduction Using SAS and Python
Reinforcement Learning for Finance A Python-Based Introduction (Final Release)
Introduction to Modern Electromagnetics
A Modern Introduction to Logic
Machine Learning on Geographical Data Using Python: Introduction into Geodata with Applications and Use Cases
Introduction to Python With Applications in Optimization, Image and Video Processing, and Machine Learning
Introduction to Python for Engineers and Scientists: Open Source Solutions for Numerical Computation
Operations Research for Social Good: A Practitioner|s Introduction Using SAS and Python
Introduction to Python With Applications in Optimization, Image and Video Processing, and Machine Learning
Introduction to Python Network Automation Volume I - Laying the Groundwork, 2nd Edition
Learn coding with Python and javascript A practical introduction for beginners
Introduction to Python Network Automation Volume I - Laying the Groundwork, 2nd Edition
Learn coding with Python and javascript A practical introduction for beginners
Arduino + Python Programming for Robots Introduction to UI based computer control (+code)
Command Line : A Modern Introduction
An Introduction to Modern Japanese Book Two
A Modern Introduction to Dynamical Systems
Introduction to Modern Cryptography, Second Edition
Introduction to Modern Algebra and Its Applications
Command Line A Modern Introduction
Introduction to Modern Algebra and its Applications
Command Line A Modern Introduction
Linear Algebra. A Modern Introduction
Introduction to Modern Economic Growth
Introduction to Machine Learning with Security Theory and Practice Using Python in the Cloud, 2nd Edition
Introduction to Data Science A Python Approach to Concepts, Techniques and Applications 2nd Edition