BOOKS - Deep Generative Modeling, 2nd Edition
Deep Generative Modeling, 2nd Edition - Jakub M. Tomczak 2024 PDF | EPUB Springer BOOKS
ECO~15 kg CO²

1 TON

Views
29459

Telegram
 
Deep Generative Modeling, 2nd Edition
Author: Jakub M. Tomczak
Year: 2024
Pages: 325
Format: PDF | EPUB
File size: 50.2 MB
Language: ENG



Pay with Telegram STARS
DEEP GENERATIVE MODELING 2ND EDITION A Comprehensive Introduction The second edition of Deep Generative Modeling is a comprehensive introduction to generative models, which are a class of machine learning algorithms that learn to represent and generate data distributions. The book covers the fundamentals of generative modeling, including the basics of probability theory, linear algebra, and neural networks, as well as more advanced topics such as variational inference, normalizing flows, and adversarial training. It also discusses the challenges of deep generative modeling, such as mode collapse and vanishing gradients, and provides practical tips for addressing these issues. The book is divided into four parts: Part I: Basics of Probability Theory and Generative Models This part introduces the reader to the basics of probability theory and generative models, including Bayesian inference and the concept of latent variables. It also covers the basic tools and techniques used in deep generative modeling, such as Markov chains, Gaussian processes, and variational inference. Part II: Neural Networks and Deep Learning In this part, the authors delve into the details of neural networks and their application to deep generative modeling. They cover the basics of neural networks, including the multilayer perceptron, backpropagation, and activation functions, as well as more advanced topics such as convolutional neural networks and recurrent neural networks.
DEEP GENERATIVE MODELING 2ND EDITION A Comprehensive Introduction Второе издание Deep Generative Modeling представляет собой комплексное введение в генеративные модели, представляющие собой класс алгоритмов машинного обучения, которые учатся представлять и генерировать распределения данных. Книга охватывает основы генеративного моделирования, включая основы теории вероятностей, линейной алгебры и нейронных сетей, а также более продвинутые темы, такие как вариационный вывод, нормализация потоков и состязательное обучение. В нем также обсуждаются проблемы глубокого генеративного моделирования, такие как сворачивание режимов и градиенты схода, и даются практические советы по решению этих проблем. Книга разделена на четыре части: Часть I: Основы теории вероятностей и генеративные модели Эта часть знакомит читателя с основами теории вероятностей и генеративными моделями, включая байесовский вывод и концепцию латентных переменных. Он также охватывает основные инструменты и методы, используемые в глубоком генеративном моделировании, такие как цепи Маркова, гауссовы процессы и вариационный вывод. Часть II: Нейронные сети и глубокое обучение В этой части авторы углубляются в детали нейронных сетей и их применение к глубокому генеративному моделированию. Они охватывают основы нейронных сетей, включая многослойный перцептрон, обратное распространение и функции активации, а также более продвинутые темы, такие как сверточные нейронные сети и рекуррентные нейронные сети.
''

You may also be interested in:

Anatomy of Deep Learning Principles: Writing a deep learning library from scratch (Japanese Edition)
Programming PyTorch for Deep Learning Creating and Deploying Deep Learning Applications First Edition
Practical Mathematics for AI and Deep Learning: A Concise yet In-Depth Guide on Fundamentals of Computer Vision, NLP, Complex Deep Neural Networks and Machine Learning (English Edition)
Gas and Oil Reliability Engineering, Second Edition Modeling and Analysis 2nd Edition
Creative Prototyping with Generative AI: Augmenting Creative Workflows with Generative AI (Design Thinking)
Introduction to Computation and Programming Using Python, third edition With Application to Computational Modeling and Understanding Data Third Edition
Excel Modeling in Corporate Finance, Fifth Edition, Global Edition
Hyperautomation with Generative AI Learn how Hyperautomation and Generative AI can help you transform your business and create new value
Hyperautomation with Generative AI Learn how Hyperautomation and Generative AI can help you transform your business and create new value
Nonlinear Regression Modeling for Engineering Applications Modeling, Model Validation, and Enabling Design of Experiments
Scale Modeling Handbook 6 - Modeling Tanks and Military Vehicles
Artificial Intelligence for Learning Using AI and Generative AI to Support Learner Development, 2nd Edition
Artificial Intelligence for Learning Using AI and Generative AI to Support Learner Development, 2nd Edition
Artificial Intelligence for Learning Using AI and Generative AI to Support Learner Development, 2nd Edition
Data Science Solutions on Azure The Rise of Generative AI and Applied AI, 2nd Edition
Data Science Solutions on Azure The Rise of Generative AI and Applied AI, 2nd Edition
Sequential Decision Analytics and Modeling Modeling with Python
The Potential of Generative AI: Transforming technology, business and art through innovative AI applications (English Edition)
Multilevel Modeling Using R, Second Edition
Multilevel Modeling Using R, 3rd Edition
Multilevel Modeling Using R, 3rd Edition
Multilevel Modeling Using R, 3rd Edition
Financial Modeling, Fourth Edition
Ultimate Generative AI Solutions on Google Cloud Practical Strategies for Building and Scaling Generative AI Solutions with Google Cloud Tools, Langchain, RAG, and LLMOps
Statistical Modeling and Computation, 2nd Edition
Generative AI with Amazon Bedrock: Build, scale, and secure generative AI applications using Amazon Bedrock
Engineering Computations and Modeling in MATLAB/Simulink, Second Edition
Multiphysics Modeling Using COMSOL 5 and MATLAB, 2nd Edition
Information Modeling and Relational Databases, 3rd Edition
A First Course in Differential Equations with Modeling Applications, 12th Edition
Micromechatronics Modeling, Analysis, and Design with MATLAB, Second Edition
Business Process Modeling, Simulation and Design. Third Edition
Information Modeling and Relational Databases, 3rd Edition
Financial Modeling in Excel For Dummies, 2nd Edition
A First Course in Differential Equations with Modeling Applications, 12th Edition
Flight Mechanics Modeling and Analysis, 2nd Edition
A First Course in Differential Equations with Modeling Applications 11th Edition
Modeling of Dynamic Systems with Engineering Applications, Second Edition
Transportation Engineering Theory, Practice, and Modeling, Second Edition
Meshing, Geometric Modeling and Numerical Simulation, Volume 2: Metrics, Meshes and Mesh Adaptation (Geometric Modeling and Applications)