BOOKS - Split Federated Learning for Secure IoT Applications Concepts, frameworks, ap...
Split Federated Learning for Secure IoT Applications Concepts, frameworks, applications and case studies - Gururaj Harinahalli Lokesh, Geetabai S. Hukkeri, N.Z. Jhanjhi, Hong Lin 2024 PDF The Institution of Engineering and Technology BOOKS
ECO~14 kg CO²

1 TON

Views
25568

Telegram
 
Split Federated Learning for Secure IoT Applications Concepts, frameworks, applications and case studies
Author: Gururaj Harinahalli Lokesh, Geetabai S. Hukkeri, N.Z. Jhanjhi, Hong Lin
Year: 2024
Pages: 285
Format: PDF
File size: 10.1 MB
Language: ENG



Pay with Telegram STARS
The book "Split Federated Learning for Secure IoT Applications: Concepts, Frameworks, and Case Studies" provides a comprehensive overview of the current state of federated learning research and its applications in secure IoT applications. The book covers the fundamental concepts of federated learning, including the challenges and limitations of traditional federated learning approaches, and introduces the concept of split federated learning as a potential solution to these challenges. It also discusses various frameworks and case studies that demonstrate the effectiveness of split federated learning in securing IoT applications. The book begins by exploring the need for secure IoT applications and the role that federated learning can play in achieving this goal. It highlights the importance of protecting sensitive data and ensuring the privacy and security of users in IoT applications, and how federated learning can help achieve this goal. The book then delves into the details of traditional federated learning approaches, including their limitations and challenges, and how split federated learning can address these issues. The book next presents the concept of split federated learning and its benefits, including improved data privacy and security, better communication efficiency, and enhanced fault tolerance. It explains how split federated learning works and how it can be applied to various IoT applications, such as smart homes, industrial control systems, and intelligent transportation systems. The book also discusses the challenges associated with implementing split federated learning in real-world scenarios and provides guidance on overcoming these challenges.
В книге «Split Federated arning for Secure IoT Applications: Concepts, Frameworks, and Case Studies» (Разделение федеративного обучения для безопасных приложений Интернета вещей: концепции, инфраструктуры и практические примеры) представлен всесторонний обзор текущего состояния исследований федеративного обучения и его приложений в безопасных приложениях Интернета вещей. Книга охватывает фундаментальные концепции федеративного обучения, включая проблемы и ограничения традиционных подходов к федеративному обучению, и представляет концепцию раздельного федеративного обучения как потенциальное решение этих проблем. Здесь также обсуждаются различные структуры и тематические исследования, демонстрирующие эффективность раздельного объединенного обучения в обеспечении безопасности приложений Интернета вещей. Книга начинается с изучения потребности в безопасных приложениях для Интернета вещей и роли, которую федеративное обучение может сыграть в достижении этой цели. В нем подчеркивается важность защиты конфиденциальных данных и обеспечения конфиденциальности и безопасности пользователей в приложениях Интернета вещей, а также то, как объединенное обучение может помочь в достижении этой цели. Затем в книге подробно рассматриваются традиционные подходы к федеративному обучению, включая их ограничения и проблемы, а также то, как разделенное федеративное обучение может решить эти проблемы. Далее в книге представлена концепция раздельного федеративного обучения и его преимущества, включая повышение конфиденциальности и безопасности данных, повышение эффективности связи и повышение отказоустойчивости. В нем объясняется, как работает разделенное федеративное обучение и как его можно применить к различным приложениям Интернета вещей, таким как умные дома, промышленные системы управления и интеллектуальные транспортные системы. В книге также обсуждаются проблемы, связанные с внедрением раздельного федеративного обучения в реальных сценариях, и приводятся рекомендации по преодолению этих проблем.
''

You may also be interested in:

Learning and Operating Presto Fast Federated SQL Analytics (Early Release)
Model Optimization Methods for Efficient and Edge AI Federated Learning Architectures, Frameworks and Applications
Model Optimization Methods for Efficient and Edge AI Federated Learning Architectures, Frameworks and Applications
Fog Computing for Intelligent Cloud IoT Systems (Advances in Learning Analytics for Intelligent Cloud-IoT Systems)
Federated Deep Learning for Healthcare: A Practical Guide with Challenges and Opportunities (Advances in Smart Healthcare Technologies)
Learning Techniques for the IoT
Federated Learning: Unlocking the Power of Collaborative Intelligence (Chapman and Hall CRC Artificial Intelligence and Robotics Series)
Machine Learning Techniques and Analytics for Cloud Security (Advances in Learning Analytics for Intelligent Cloud-IoT Systems)
Blockchain and Machine Learning for IoT Security
Blockchain and Machine Learning for IoT Security
Blockchain and Machine Learning for IoT Security
Machine Learning and IoT A Biological Perspective
Applied Learning Algorithms for Intelligent IoT
Machine Learning and IoT Applications for Health Informatics
Introduction to IoT with Machine Learning and Image Processing using Raspberry Pi
IoT, Machine Learning and Data Analytics for Smart Healthcare
Applications of Optimization and Machine Learning in Image Processing and IoT
IoT, Machine Learning and Data Analytics for Smart Healthcare
Machine Learning Approach for Cloud Data Analytics in IoT
IoT, Machine Learning and Data Analytics for Smart Healthcare
Big Data, IoT, and Machine Learning Tools and Applications
Applications of Optimization and Machine Learning in Image Processing and IoT
New Age Analytics Transforming the Internet through Machine Learning, IoT, and Trust Modeling
Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing Hardware Architectures
Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing Hardware Architectures
Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing Use Cases and Emerging Challenges
Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing Use Cases and Emerging Challenges
Design and Deploy Microsoft Defender for IoT: Leveraging Cloud-based Analytics and Machine Learning Capabilities
Design and Deploy Microsoft Defender for IoT Leveraging Cloud-based Analytics and Machine Learning Capabilities
Design and Deploy Microsoft Defender for IoT Leveraging Cloud-based Analytics and Machine Learning Capabilities
Smart Sensors for Industry 4.0: Fundamentals, Fabrication and IIoT Applications (Advances in Learning Analytics for Intelligent Cloud-IoT Systems)
Programming for the Internet of Things Using Windows 10 IoT Core and Azure IoT Suite
Give Yourself IoT Super Powers Build an IoT Powered Garage Opener
Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing: Software Optimizations and Hardware Software Codesign
Internet of Things (IoT) A Quick Start Guide A to Z of IoT Essentials
Internet of Things (IoT) Principles, Paradigms and Applications of IoT
Secure Development for Mobile Apps How to Design and Code Secure Mobile Applications with PHP and javascript
Python Programming Handbook For IoT Development A Complete Beginners Guide To Learning Essential Skills To Build Connected Devices, Collect Data And Create Innovative Applications
Python Programming Handbook For IoT Development A Complete Beginners Guide To Learning Essential Skills To Build Connected Devices, Collect Data And Create Innovative Applications
Let|s Get IoT-fied! 30 IoT Projects for All Levels