BOOKS - Before Machine Learning, Volume 2 - Calculus for A.I. The fundamental mathema...
Before Machine Learning, Volume 2 - Calculus for A.I. The fundamental mathematics for Data Science and Artificial Intelligence - Jorge Brasil 2024 PDF | CODE Independently published BOOKS
ECO~15 kg CO²

1 TON

Views
533988

 
Before Machine Learning, Volume 2 - Calculus for A.I. The fundamental mathematics for Data Science and Artificial Intelligence
Author: Jorge Brasil
Year: 2024
Pages: 314
Format: PDF | CODE
File size: 10.1 MB
Language: ENG



Before Machine Learning Volume 2 Calculus for AI: The Fundamental Mathematics for Data Science and Artificial Intelligence As we venture into the realm of machine learning, we are often overwhelmed by the complexity of calculus, leaving us lost in a thicket of equations. However, what if we could approach this territory with clarity and ease? In Before Machine Learning Volume 2: Calculus for AI, we embark on a unique exploration that demystifies the world of calculus through the fascinating biology of bees. This book offers a fresh perspective on mathematics, one that is both enlightening and unexpected. Through the lens of bee biology, we explore the mathematical landscapes of derivatives, gradients, and algorithms, drawing parallels between the meticulous behaviors of these remarkable insects and the principles of calculus. Every concept, from gradient descent to neural networks, is related back to the intuitive understanding of nature's own algorithms. This is not a mere textbook; it's a dialogue, a story that unfolds through the natural wisdom of bees. The book begins with an introduction to the world of bees, their social structure, and their intricate dance patterns. We delve into the fundamentals of calculus, explaining the concepts of limits, derivatives, and integrals in a way that is accessible and easy to understand. As we progress, we discover how these mathematical principles are reflected in the behavior of bees, revealing the connections between the disciplined dance of bees and the structured world of mathematics. In Part I, we explore the foundations of calculus, examining the basic principles of limits, derivatives, and integrals.
Before Machine arning Volume 2 Calculus for AI: The Fundamental Mathematics for Data Science and Artificial Intelligence По мере того, как мы вторгаемся в сферу машинного обучения, нас часто переполняет сложность исчисления, в результате чего мы теряемся в чаще уравнений. Однако что, если бы мы могли подойти к этой территории с ясностью и легкостью? В Before Machine arning Volume 2: Calculus for AI мы приступаем к уникальному исследованию, которое демистифицирует мир исчисления через увлекательную биологию пчел. Эта книга предлагает свежий взгляд на математику, тот, который одновременно является и просвещающим, и неожиданным. Через призму биологии пчел мы исследуем математические ландшафты производных, градиентов и алгоритмов, проводя параллели между скрупулезным поведением этих замечательных насекомых и принципами исчисления. Каждая концепция, от градиентного спуска до нейронных сетей, связана с интуитивным пониманием собственных алгоритмов природы. Это не просто учебник; это диалог, история, которая разворачивается через природную мудрость пчел. Книга начинается с знакомства с миром пчел, их социальной структурой и их замысловатыми танцевальными образцами. Мы углубляемся в основы исчисления, объясняя понятия пределов, производных и интегралов так, чтобы это было доступно и легко понять. По мере продвижения мы обнаруживаем, как эти математические принципы отражаются на поведении пчел, выявляя связи между дисциплинированным танцем пчел и структурированным миром математики. В части I мы исследуем основы исчисления, исследуя основные принципы пределов, производных и интегралов.
Before Machine arning Volume 2 Calculus for AI : The Fundamental Mathematics for Data Science and Artificial Intelligence Pendant que nous envahissons le domaine de l'apprentissage automatique, nous sommes souvent submergés par la complexité du calcul, ce qui nous fait perdre plus souvent les équations. Et si nous pouvions aborder ce territoire avec clarté et facilité ? Dans Before Machine arning Volume 2 : Calculus for AI, nous commençons une étude unique qui démystifie le monde du calcul à travers la fascinante biologie des abeilles. Ce livre offre un regard nouveau sur les mathématiques, qui est à la fois éclairant et inattendu. À travers le prisme de la biologie des abeilles, nous explorons les paysages mathématiques des dérivés, des gradients et des algorithmes en faisant des parallèles entre le comportement scrupuleux de ces insectes remarquables et les principes du calcul. Chaque concept, de la descente gradiente aux réseaux neuronaux, est associé à la compréhension intuitive de ses propres algorithmes naturels. Ce n'est pas seulement un manuel ; c'est un dialogue, une histoire qui se déroule à travers la sagesse naturelle des abeilles. livre commence par une connaissance du monde des abeilles, de leur structure sociale et de leurs modèles de danse complexes. Nous approfondirons les bases du calcul en expliquant les notions de limites, de dérivés et d'intégrales de manière à ce qu'elles soient accessibles et faciles à comprendre. À mesure que nous progressons, nous découvrons comment ces principes mathématiques se reflètent sur le comportement des abeilles, en identifiant les liens entre la danse disciplinée des abeilles et le monde structuré des mathématiques. Dans la partie I, nous examinons les bases du calcul en examinant les principes de base des limites, des dérivés et des intégrales.
Before Machine Arning Volumen 2 Calculus for AI: The Fundamental Mathematics for Data Science and Artificial Intelligence A medida que invadimos el campo del aprendizaje automático, a menudo nos desbordan la complejidad del cálculo, lo que nos hace perder en más ecuaciones. n embargo, qué pasaría si pudiéramos acercarnos a este territorio con claridad y facilidad? En Before Machine arning Volume 2: Calculus for AI nos embarcamos en un estudio único que desmitifica el mundo del cálculo a través de la fascinante biología de las abejas. Este libro ofrece una visión fresca de las matemáticas, una que es a la vez iluminadora e inesperada. A través del prisma de la biología de las abejas, exploramos paisajes matemáticos de derivados, gradientes y algoritmos, trazando paralelismos entre el comportamiento escrupuloso de estos maravillosos insectos y los principios de cálculo. Cada concepto, desde el descenso gradiente hasta las redes neuronales, está relacionado con la comprensión intuitiva de los propios algoritmos de la naturaleza. No es sólo un tutorial; es un diálogo, una historia que se desarrolla a través de la sabiduría natural de las abejas. libro comienza con una familiaridad con el mundo de las abejas, su estructura social y sus intrincados patrones de baile. Profundizamos en los fundamentos del cálculo, explicando los conceptos de límites, derivados e integrales de una manera accesible y fácil de entender. A medida que avanzamos, descubrimos cómo estos principios matemáticos se reflejan en el comportamiento de las abejas, identificando las conexiones entre la danza disciplinada de las abejas y el mundo estructurado de las matemáticas. En la Parte I exploramos los fundamentos del cálculo, explorando los principios básicos de los límites, derivados e integrales.
Before Machine arning Volume 2 Calculus for AI: The Fundamental Mathematics for Data Science and Artificial Intelligence Wenn wir in den Bereich des maschinellen rnens eindringen, werden wir oft von der Komplexität der Kalkulation überwältigt, wodurch wir uns in häufigeren Gleichungen verlieren. Was aber, wenn wir uns diesem Gebiet mit Klarheit und ichtigkeit nähern könnten? In Before Machine arning Volume 2: Calculus for AI beginnen wir mit einer einzigartigen Studie, die die Welt des Kalküls durch die faszinierende Biologie der Bienen entmystifiziert. Dieses Buch bietet einen frischen Blick auf die Mathematik, eine, die sowohl aufschlussreich als auch unerwartet ist. Durch das Prisma der Bienenbiologie untersuchen wir mathematische Landschaften von Ableitungen, Gradienten und Algorithmen und ziehen Parallelen zwischen dem akribischen Verhalten dieser bemerkenswerten Insekten und den Prinzipien des Kalküls. Jedes Konzept, vom Gradientenabstieg bis hin zu neuronalen Netzen, ist mit einem intuitiven Verständnis der natureigenen Algorithmen verbunden. Es ist nicht nur ein hrbuch; Es ist ein Dialog, eine Geschichte, die sich durch die natürliche Weisheit der Bienen entfaltet. Das Buch beginnt mit einer Einführung in die Welt der Bienen, ihrer sozialen Struktur und ihrer komplizierten Tanzmuster. Wir vertiefen uns in die Grundlagen des Kalküls, indem wir die Konzepte von Grenzen, Ableitungen und Integralen so erklären, dass sie zugänglich und leicht verständlich sind. Im weiteren Verlauf entdecken wir, wie sich diese mathematischen Prinzipien im Verhalten der Bienen widerspiegeln, indem wir Zusammenhänge zwischen dem disziplinierten Tanz der Bienen und der strukturierten Welt der Mathematik aufdecken. In Teil I untersuchen wir die Grundlagen des Kalküls, indem wir die Grundprinzipien von Grenzen, Ableitungen und Integralen untersuchen.
''
Makine Öğrenmeden Önce Cilt 2 Yapay Zeka için Kalkülüs: Veri Bilimi ve Yapay Zeka için Temel Matematik Makine öğrenimi alanını istila ettikçe, denklemlerde daha sık kaybolmamızın bir sonucu olarak, genellikle kalkülüsün karmaşıklığı tarafından boğuluruz. Ancak, bu bölgeye açıklık ve kolaylıkla yaklaşabilseydik ne olurdu? Before Machine arning Volume 2: Calculus for AI'da, büyüleyici arı biyolojisi ile kalkülüs dünyasını aydınlatan eşsiz bir keşfe çıkıyoruz. Bu kitap matematiğe hem aydınlatıcı hem de beklenmedik yeni bir bakış açısı sunuyor. Arı biyolojisi merceğinden, türevlerin, gradyanların ve algoritmaların matematiksel manzaralarını keşfediyor, bu dikkate değer böceklerin titiz davranışları ile hesap ilkeleri arasında paralellikler çiziyoruz. Degrade inişinden sinir ağlarına kadar her kavram, doğanın kendi algoritmalarının sezgisel bir şekilde anlaşılmasıyla bağlantılıdır. Bu sadece bir ders kitabı değil; Bu bir diyalog, arıların doğal bilgeliği ile ortaya çıkan bir hikaye. Kitap, arıların dünyasına, sosyal yapılarına ve karmaşık dans kalıplarına bir giriş ile başlar. Hesabın temellerini araştırıyoruz, limit, türev ve integral kavramlarını erişilebilir ve anlaşılması kolay bir şekilde açıklıyoruz. İlerledikçe, bu matematiksel ilkelerin arı davranışına nasıl yansıdığını keşfeder, disiplinli arı dansı ile matematiğin yapılandırılmış dünyası arasındaki bağlantıları ortaya çıkarırız. Bölüm I'de, limitlerin, türevlerin ve integrallerin temel prensiplerini inceleyerek hesabın temellerini araştırıyoruz.
قبل التعلم الآلي المجلد 2 حساب التفاضل والتكامل للذكاء الاصطناعي: الرياضيات الأساسية لعلوم البيانات والذكاء الاصطناعي بينما نغزو مجال التعلم الآلي، غالبًا ما يغمرنا تعقيد حساب التفاضل والتكامل، ونتيجة لذلك نضيع في المعادلات في كثير من الأحيان. ومع ذلك، ماذا لو تمكنا من الاقتراب من هذه المنطقة بوضوح وسهولة ؟ في المجلد 2 قبل التعلم الآلي: حساب التفاضل والتكامل للذكاء الاصطناعي، نشرع في استكشاف فريد يزيل الغموض عن عالم التفاضل والتكامل من خلال بيولوجيا النحل الرائعة. يقدم هذا الكتاب منظورًا جديدًا للرياضيات، منظورًا منيرًا وغير متوقع. من خلال عدسة بيولوجيا النحل، نستكشف المناظر الطبيعية الرياضية للمشتقات والتدرجات والخوارزميات، ونرسم أوجه تشابه بين السلوك الدقيق لهذه الحشرات الرائعة ومبادئ حساب التفاضل والتكامل. يرتبط كل مفهوم، من النسب المتدرج إلى الشبكات العصبية، بفهم بديهي لخوارزميات الطبيعة الخاصة. إنه ليس مجرد كتاب مدرسي ؛ إنه حوار، قصة تتكشف من خلال الحكمة الطبيعية للنحل. يبدأ الكتاب بمقدمة لعالم النحل وبنيته الاجتماعية وأنماط رقصه المعقدة. نحن نتعمق في أسس حساب التفاضل والتكامل، ونشرح مفاهيم الحدود والمشتقات والتكامل بطريقة يسهل الوصول إليها ويسهل فهمها. بينما نتقدم، نكتشف كيف تنعكس هذه المبادئ الرياضية في سلوك النحل، وكشف الروابط بين رقصة النحل المنضبطة والعالم المنظم للرياضيات. في الجزء الأول، نستكشف أسس حساب التفاضل والتكامل من خلال دراسة المبادئ الأساسية للحدود والمشتقات والتكاملات.

You may also be interested in:

Machine Learning Q and AI: 30 Essential Questions and Answers on Machine Learning and AI
Machine Learning Q and AI 30 Essential Questions and Answers on Machine Learning and AI
Before Machine Learning Volume 1 - Linear Algebra for A.I. The fundamental mathematics for Data Science and Artificial Inteligence
Before Machine Learning Volume 1 - Linear Algebra for A.I. The fundamental mathematics for Data Science and Artificial Inteligence
Before Machine Learning Volume 1 - Linear Algebra for A.I: The fundamental mathematics for Data Science and Artificial Inteligence.
Machine Learning with Python Comprehensive Beginner’s Guide to Machine Learning in Python with Exercises and Case Studies
Machine Learning with Rust: A practical attempt to explore Rust and its libraries across popular machine learning techniques
Machine Learning with Rust A practical attempt to explore Rust and its libraries across popular Machine Learning techniques
Practical Automated Machine Learning on Azure Using Azure Machine Learning to Quickly Build AI Solutions, First Edition
Python Machine Learning: Leveraging Python for Implementing Machine Learning Algorithms and Applications (2023 Guide)
Machine Learning With Python A Comprehensive Beginners Guide to Learn the Realms of Machine Learning with Python
Machine Learning for Finance Beginner|s guide to explore machine learning in banking and finance
The Definitive Guide to Machine Learning Operations in AWS Machine Learning Scalability and Optimization with AWS
Machine Learning A Comprehensive, Step-by-Step Guide to Intermediate Concepts and Techniques in Machine Learning
Google JAX Essentials A quick practical learning of blazing-fast library for Machine Learning and Deep Learning projects
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Shallow Learning vs. Deep Learning A Practical Guide for Machine Learning Solutions
Ultimate Java for Data Analytics and Machine Learning: Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j (English Edition)
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Machine Learning For Beginners Step-by-Step Guide to Machine Learning, a Beginners Approach to Artificial Intelligence, Big Data, Basic Python Algorithms, and Techniques for Business (Practical Exampl
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Ultimate Machine Learning with Scikit-Learn Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock Deeper Insights Into Machine Learning
Ultimate Java for Data Analytics and Machine Learning Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j
Python Machine Learning: Everything You Should Know About Python Machine Learning Including Scikit Learn, Numpy, PyTorch, Keras And Tensorflow With Step-By-Step Examples And PRACTICAL Exercises
Ultimate Java for Data Analytics and Machine Learning Unlock Java|s Ecosystem for Data Analysis and Machine Learning Using WEKA, JavaML, JFreeChart, and Deeplearning4j
Artificial Intelligence What You Need to Know About Machine Learning, Robotics, Deep Learning, Recommender Systems, Internet of Things, Neural Networks, Reinforcement Learning, and Our Future
Machine Learning Infrastructure and Best Practices for Software Engineers: Take your machine learning software from a prototype to a fully fledged software system
Ultimate Machine Learning with Scikit-Learn: Unleash the Power of Scikit-Learn and Python to Build Cutting-Edge Predictive Modeling Applications and Unlock … Into Machine Learning (English Editi
Machine Learning Step-by-Step Guide To Implement Machine Learning Algorithms with Python
Machine Learning in Python Hands on Machine Learning with Python Tools, Concepts and Techniques
Machine Learning with Python Advanced and Effective Strategies Using Machine Learning with Python Theories
Machine Learning For Beginners A Comprehensive Beginners Guide To Machine Learning, No Experience Required!
Cracking The Machine Learning Interview 225 Machine Learning Interview Questions with Solutions
Mastering Classification Algorithms for Machine Learning: Learn how to apply Classification algorithms for effective Machine Learning solutions (English Edition)
Machine Learning With Python Programming 2023 A Beginners Guide The Definitive Guide to Mastering Machine Learning in Python and a Problem-Guide Solver to Creating Real-World Intelligent Systems
Machine Learning With Python Programming 2023 A Beginners Guide The Definitive Guide to Mastering Machine Learning in Python and a Problem-Guide Solver to Creating Real-World Intelligent Systems
Machine Learning in Trading: Step by step implementation of Machine Learning models
Deep Machine Learning Complete Tips and Tricks to Deep Machine Learning
Machine Learning in Microservices: Productionizing microservices architecture for machine learning solutions
Mastering ChatGPT and Google Colab for Machine Learning Automate AI Workflows and Fast-Track Your Machine Learning Tasks with the Power of ChatGPT, Google Colab, and Python